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Outline

They consider the task of multi-document summarization where
multiple documents are distilled into a single summary.

Introduces the decoder-only architecture thats scales to longer
sequences than the encoder-decoder architecture.



Dataset
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Model

- Extractive stage

- Relevant sentence extraction
- Abstractive stage

- Wikipedia article generation



Extraction stage

- Given Cthe cited sources and S the search results
- Foreach articlein (C, S), create a ranked list of of paragraphs
- Thereis a couple of methods to do this (identify a trivial baseline,
tf-idf, etc.)
- Concatenate all the ranked paragraphs and extract the L tokens, L
being typically of length 11000



Abstractive stage

Given the sequence of words of length L
- Modify the Transformer-Encoder-Decoder (T-ED) as
Transformer-Decoder (T-D) only, similar architecture (5 instead
of 6 layers)
- (m%, ..., m")->(y1 ..., y") (transducer model) becomes
- (m?..,mn 8,y ..., y") where § is a special separator token
They train the model as a traditional language model
They suspect (would have been interesting to see concrete results!)
that for monolingual text-to-text tasks redundant information is re-
learned about language in the encoder and the decoder



Abstractive stage

- Introduction of:
- Local Attention
- Memory compressed attention
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Abstractive stage

Local Attention
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Splits the sequence into individual smaller sub-
sequences. The sub-sequences are then merged
together to get the final output sequence.



Abstractive stage

Memory-compressed Attention

Masked Multi-Head
Attention
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Reduces the number of keys and values by using
a strided convolution (k=3, s=3).
The number of queries remains unchanged.

In contrast to local attention layers, which only
capture the local information within a block, the
memory compressed attention layers are able
to exchange information globally on the entire
sequence.



Compression with strided convolution
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Compression with strided convolution
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Compression with strided convolution
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Compression with strided convolution
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Allows to process sequences 3X longer!



Final architecture

- Combines local-attention and memory compressed attention on 5
layers:
- Local-Compressed-Local-Compressed-Local



Results

- T-EDis able to learn from sequences around 500-1000 tokens
- T-Dis able to learn from sequences of 4000 tokens before running out
of memory
- Adding Memory Compressed attention, improved performances
with sequences of up to 11000 tokens



Results

Table 5: Linguistic quality human evaluation scores (scale 1-5, higher is better). A score signif-
icantly different (according to the Welch Two Sample t-test, with p = 0.001) than the -DMCA
model is denoted by *.

Model Focus Grammar Non- Refere‘ntial Structure and
redundancy clarity Coherence

T-DMCA (best) 4.5 4.6 4.2 4.5 4.2

tf-idf-only 3.0% 3.6% 3.9 3.2% 2.7%

seq2seq-attention 3.0 3.4% 2.1% 3.4% 2.3%



Conclusion

Differences with Attention is All you Need

- Remove the encoder architecture
- By introducing a special separator token
- Use amemory compressed attention mechanism which allows to
handle longer sequences



