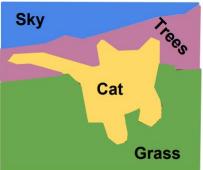
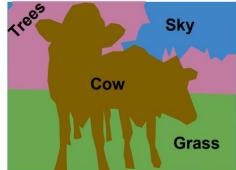
Segmentation

Segmentation sémantique

- Attribuer une classe pour chaque pixel
- Pas tenir comte des différentes instances
 - toutes les vaches,
 arbres, etc. sont
 groupés ensembles





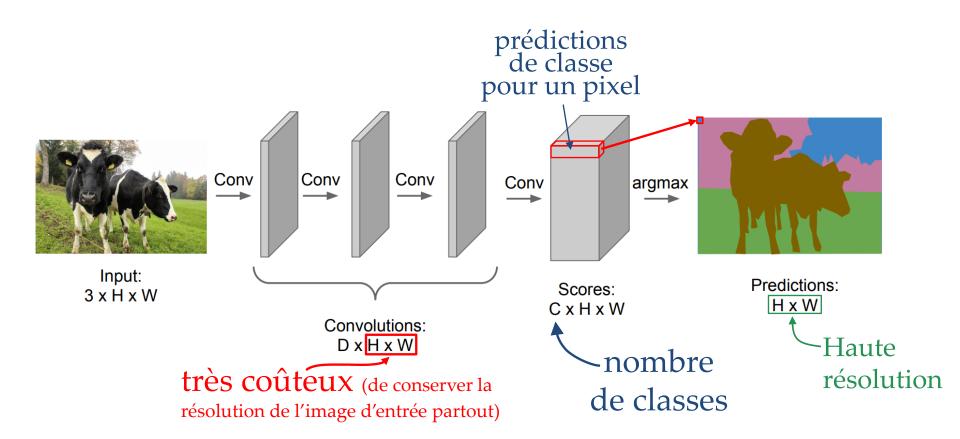
• Limite les applications : ne va pas distinguer les voitures, empêchant le *tracking*

Segmentation sémantique

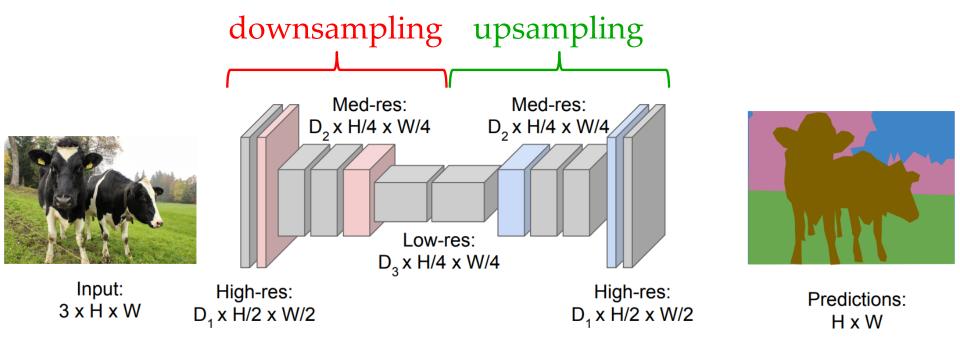
- S'entraîne en calculant la perte pour chacun des pixels
 - nécessite d'avoir la vérité-terrain pour TOUS LES PIXELS (\$\$\$)
- Souvent, fort débalancement des classes (background dominant)
 - augmenter la perte pour les classes moins représentées
 - focal loss peut aider à réduire l'impact

Approche Fully-Convolutional

• Dernières couches de convolutions agissent comme des *fully-connected*, pour faire la classification



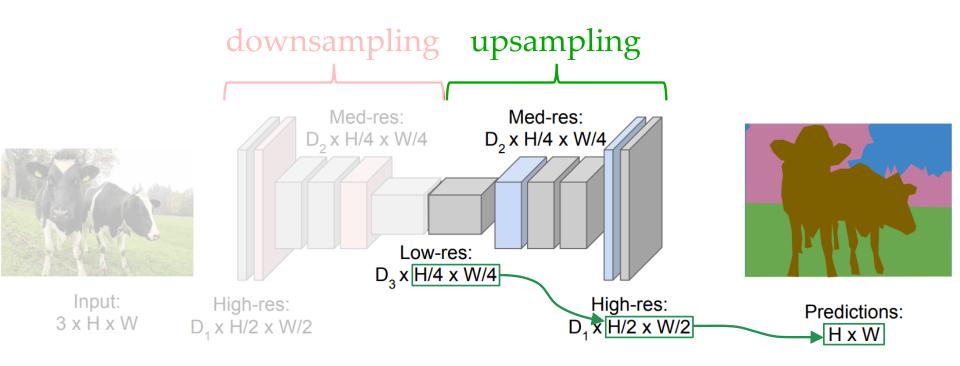
Hourglass: réduire les calculs



- Perte d'information spatiale fine
 - baisse de résolution H, W
 - verra plus loin comment corriger cela

Opération d'upsampling

- Pour augmenter la résolution spatiale
- Plusieurs approches possibles



Upsampling: sans paramètres

Nearest-neighbors

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1

5	6
7	8

→ • • • •
Rest of the network

1	2
3	4

Input: 4 x 4

Output: 2 x 2

Upsampling: sans paramètres

1	1	2	2
1	1	2	2
3	3	4	4
3	3	4	4

« Bed-of-nails »

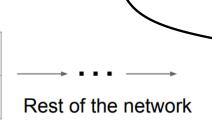
1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1

 5	6
7	8



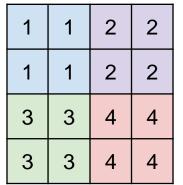
1	2
3	4

Input: 4 x 4

Output: 2 x 2

Upsampling: sans paramètres

Nearest-neighbors



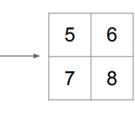
« Bed-of-nails »

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8





Max Unpooling Use positions from pooling layer

1	2	
3	4	

Beaucoup de zéros!

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

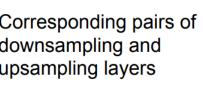
Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

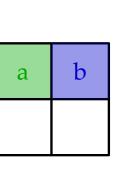


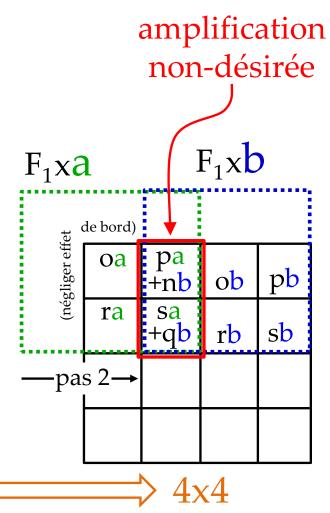
Upsampling avec paramètres: upconvolution

 $\mathbf{\Gamma}$

- Des filtres *F* appris
- Exemple : filtre 3x3, pas de 2
- Peut créer des artéfacts on forme d'échiquier dans la sortie
- S'évite avec
 - filtre 2x2 stride 2
 - filtre 4x4 stride 2
 - etc...

	\mathbf{r}_1		
•	k	1	m
3x5	n	О	p
	q	r	S
·			





Other names:

- -Deconvolution (bad)
- -Upconvolution
- -Fractionally strided convolution
- Backward strided convolution

Upsampling

Upsampling: sub-pix + shuffle

Checkerboard artifact free sub-pixel convolution

A note on sub-pixel convolution, resize convolution and convolution resize

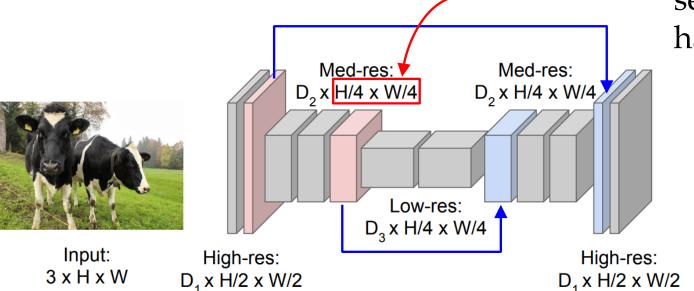
Andrew Aitken*, Christian Ledig*, Lucas Theis*, Jose Caballero, Zehan Wang, Wenzhe Shi*

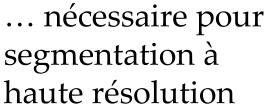
Twitter, Inc.1

Figure 2: Sub-pixel convolution can be interpreted as convolution + shuffling.

Perte d'information spatiale fine

• Approche *hourglass* fait **perdre l'information** de haute résolution — ... nécessaire p



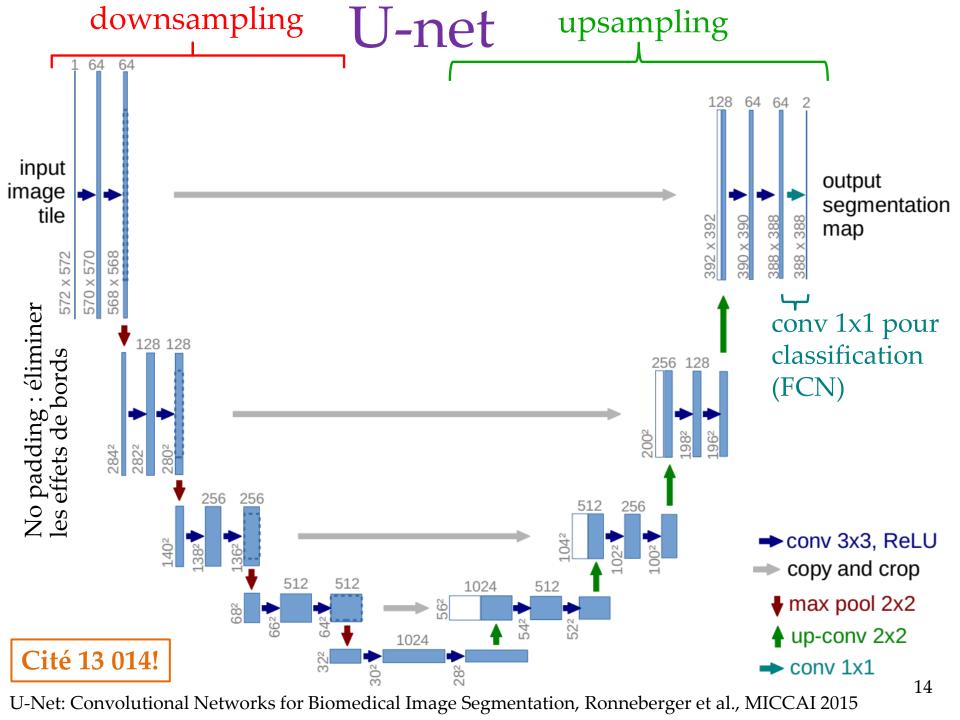


Predictions: H x W

- Pour compenser, ajouter des *skips connections* entre les couches de même résolution : U-Net
- Rappel : *skip* n'ajoute pas de paramètres

U-net

- Vient du domaine de l'imagerie biomédicale
- Quantité de données plus limitée
- Emploie des déformations élastiques pour faire data augmentation
 - rappel : comprendre la physique du problème
 - tissus humains sont mous et déformables
- Perte qui tient compte de la position
 - perte plus élevée pour les erreurs sur background en pourtour des autres classes



Segmentation d'instances

Segmentation d'instances

- Hybride entre segmentation et détection
- Peut le percevoir comme le problème complet de la vision 2D

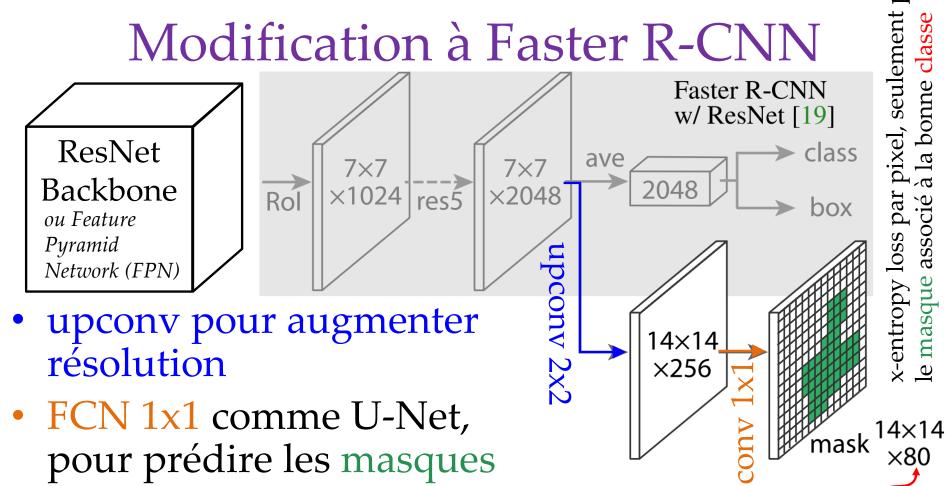
DOG, DOG, CAT

Mask R-CNN

- Performe de la segmentation d'instances
- Modification de Faster R-CNN
 - Simple ajout d'une tête supplémentaire pour prédire un masque binaire!
- N'ajoute qu'un tout petit surplus de calcul
- RoIPool → RoIAlign
- 200 ms par trame (*frame*)

Mask R-CNN:

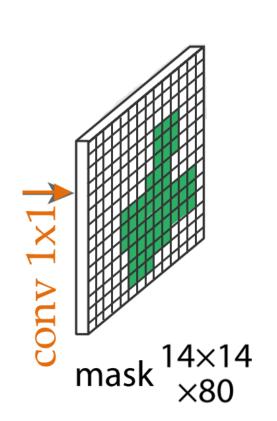
Modification à Faster R-CNN



- Découplage :
 - un masque par classe
 - élément clé des performances

classes

Découplage des masques

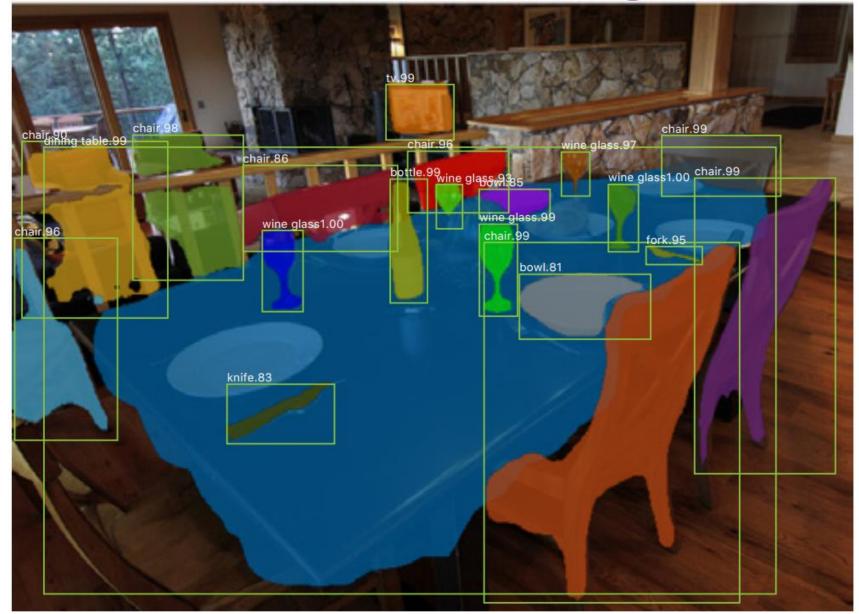


$$softmax: \hat{y}_i = \frac{\exp(z_i)}{\sum_{j \in groupe} \exp(z_j)} - couplage$$

	AP	AP_{50}	AP_{75}
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4

(b) Multinomial vs. Independent Masks (ResNet-50-C4): Decoupling via perclass binary masks (sigmoid) gives large gains over multinomial masks (softmax).

Mask R-CNN: exemple



Exemple de segmentation

• Données de Cityscape

Conclusion

 Réseaux de neurones s'appliquent aussi sur des problèmes de vision numérique au-delà de la classification

Détection

- doit retrouver les objets d'une même catégorie, sans connaitre au préalable leur nombre
- méthodes basés sur propositions (300-2000)
- concept d'anchor box
- les plus rapides : proposition par réseau (RPN)
- régression des anchor box pour localisation
- existe aussi des méthodes par grille (YOLO)

Conclusion

Segmentation sémantique

- cherche à trouver la classe de chaque pixel
- architecture U-Net
 - hourglass: downsampling et upsampling
 - méthodes d'upsampling (upconv)
 - skip connexion pour préserver l'info. spatiale fine

Segmentation d'instance

- hybride entre détection + segmentation
- Mask R-CNN : ajout d'une branche *masque*
 - importance de découpler les masques entre les classes
- Fully-convolutional network (FCN)