

### GLO-4030/7030 APPRENTISSAGE PAR RÉSEAUX DE NEURONES PROFONDS

CNN (Partie II): Exemples d'architecture

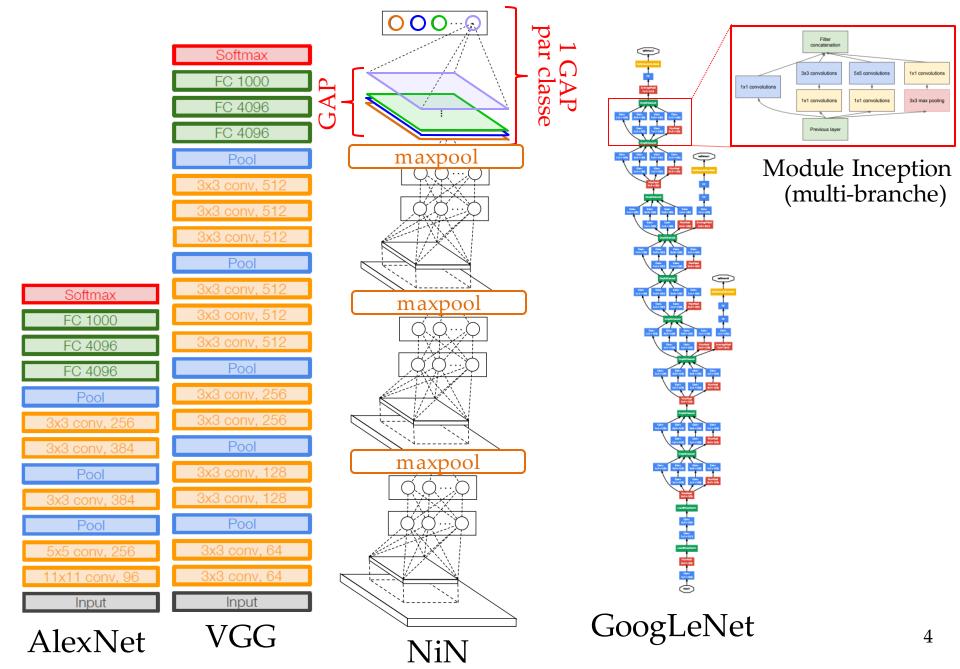
#### Admin

- Pas de laboratoire cette semaine
- Examen la semaine prochaine

#### Résumé CNN I

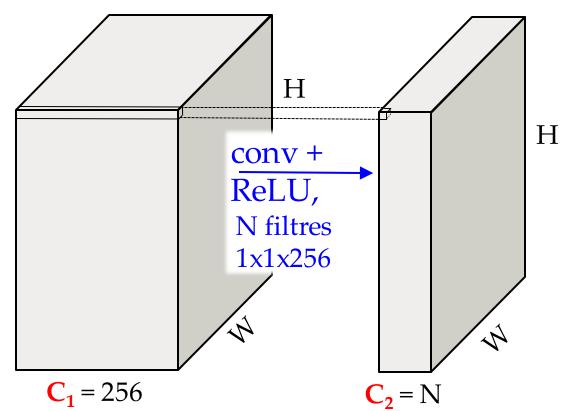
- Plus grande profondeur
- Disparition graduelle des têtes fullyconnected
  - remplacé par Global Average Pooling + 1 layer de fully-connected
- conv 3x3 est la taille dominante
- Parfois conv plus grande que 3x3 à la base
  - -5x5 ou 7x7

#### Résumé des architectures CNN I

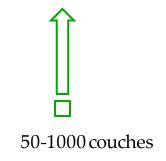


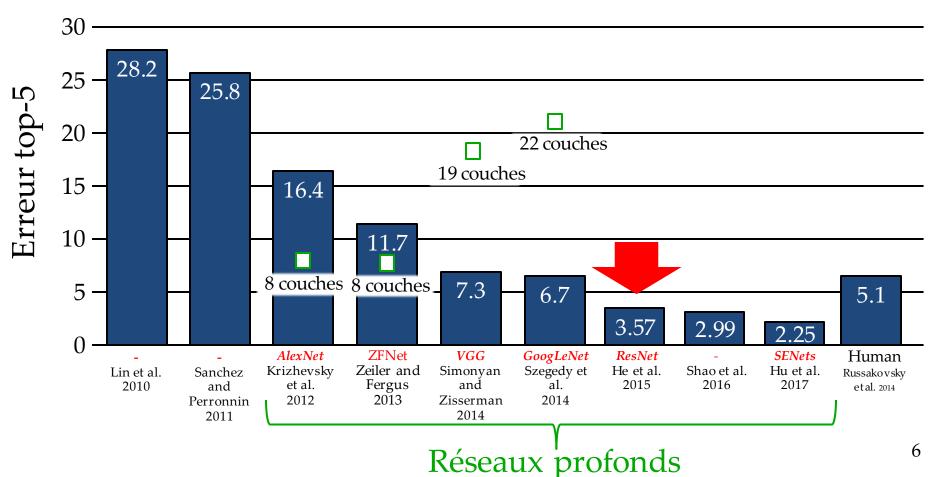
#### Résumé CNN I

- conv 1x1 sont des réseaux fully-connected
- Servent à réduire la dimensionnalité des *feature* maps



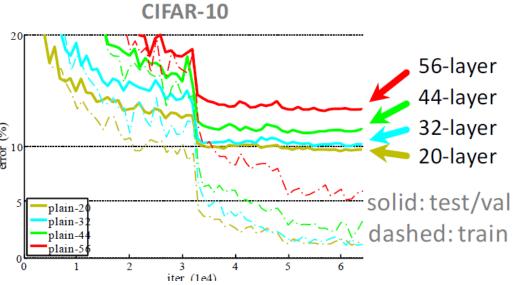
#### Large Scale Visual Recognition Challenge





- Vise l'entraînement de réseaux très profonds (30+ couches)
- Problème du *vanishing gradient* en <u>partie réglé</u> par la Batch Norm

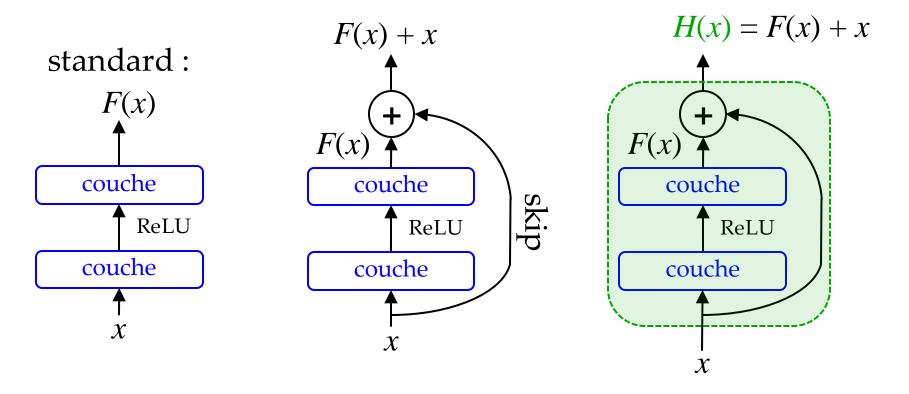
 Constat : dégradation des résultats passé une certaine profondeur



- ICML tutorial 2016, He.
- Intuition : un réseau devrait simplement apprendre la fonction identité
  - mais l'optimisation n'y arrive pas

- Dilution de l'information de correction (gradient)
- Difficile pour une couche de réutiliser des *features* des couches précédentes
  - perte de l'information flow [1]
- Difficulté d'apprendre la fonction identitaire

#### ResNet: idée de base



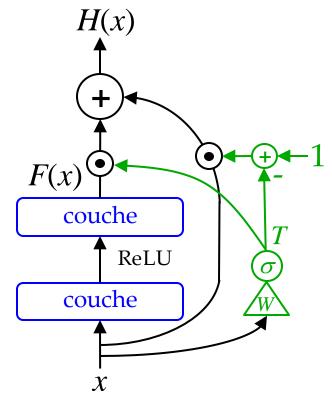
- F(x) est le résiduel entre la fonction H(x) désirée et la fonction identitaire : F(x) = H(x) x
- N'ajoute aucun paramètre au réseau, très peu de calcul
- Doit avoir au moins deux couches internes

# Highway network

- Compétiteur contemporain des ResNet
- Va utiliser du *gating* pour choisir le mélange résiduel vs. identité

$$H(x) = F(x)T + x(1-T)$$
$$T(\mathbf{x}) = \sigma(\mathbf{W_T}^T \mathbf{x} + \mathbf{b_T})$$

• ResNet a fait le pari qu'il est toujours mieux de faire la somme des deux : architecture plus simple



#### ResNet Softmax FC 1000 Global avg pool 3x3 conv. 512 3x3 conv. 512 3x3 conv. 512 3x3 conv. 512 3x3 conv, 512 3x3 conv. 512, /2 3x3 conv. 128 ReLU 3x3 conv. 128 3x3 conv. 128 3x3 conv. 128 3x3 conv. 128 BN 3x3 conv. 64 conv 3x3 3x3 conv. 64 ReLU 3x3 conv. 64 3x3 conv. 64 BN 3x3 conv. 64 3x3 conv. 64 conv 3x3

adapté de : cs231n, Université Stanford

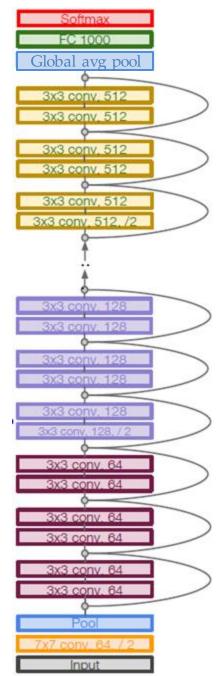
Pool

Input

- Apprentissage du résiduel :
  - plus facile (car cela peut être que des petits ajustements)
  - -F(x) initialisé avec des petites valeurs
  - pourra facilement apprendre des mapping identitaires

#### Notes:

- architecture simple de conv 3x3, style VGG
- convolution 7x7 avec stride 2 à la base
- double le # filtre après chaque réduction de taille du feature map
- position des ReLU : sera différente pour version « identity mapping »
- pas de dropout



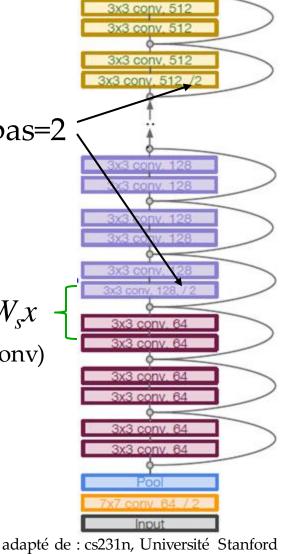
Global Average Pooling

Downsampling se fait par des conv avec pas=2

Si besoin d'ajuster les dimensions :  $y = F(x) + W_s x$  (1x1 conv)

#### Dans certains cas, besoin de warm up

"...we find that the initial learning rate of 0.1 is slightly too large to start converging. So we use 0.01 to warm up the training until the training error is below 80% (about 400 iterations), and then go back to 0.1 and continue training."



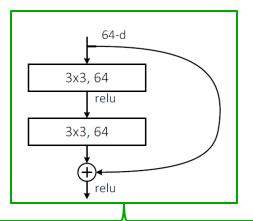
FC 1000 Global avg pool

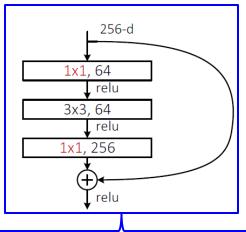
3x3 conv. 512

3x3 conv. 512

#### Bottleneck

(pour efficacité, pas pour régularisation)

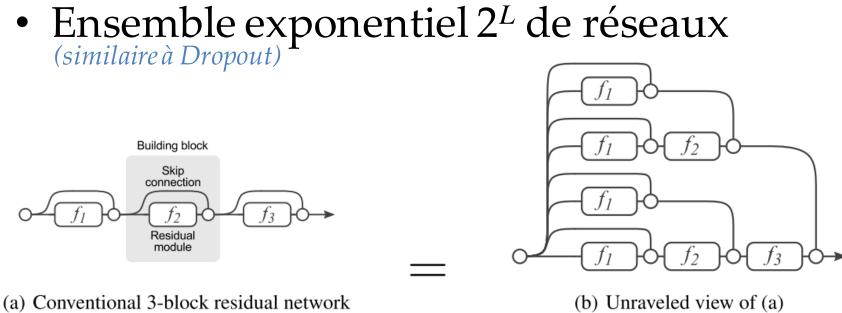




5

| layer name | output size | 18-layer                                                                              | 34-layer                                                                                | 50-layer                                                                                                       | 101-layer                                                                                                        | 152-layer                                                                                                        |
|------------|-------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                     |                                                                                         |                                                                                                                |                                                                                                                  |                                                                                                                  |
|            |             | 3×3 max pool, stride 2                                                                |                                                                                         |                                                                                                                |                                                                                                                  |                                                                                                                  |
| conv2_x    | 56×56       | $\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$   | $   \begin{bmatrix}     1 \times 1, 64 \\     3 \times 3, 64 \\     1 \times 1, 256   \end{bmatrix} \times 3 $ | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                     | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                     |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$    | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$      | $ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $   | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 4 $ | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 8 $ |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$        | $\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$ | $ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $  | $ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $   | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$                 |
| conv5_x    | 7×7         | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$           | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$             | $ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $  | $ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $                | $ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $                |
|            | 1×1         | average pool, 1000-d fc, softmax                                                      |                                                                                         |                                                                                                                |                                                                                                                  |                                                                                                                  |
| FLOPs      |             | $1.8 \times 10^9$                                                                     | $3.6 \times 10^{9}$                                                                     | $3.8 \times 10^{9}$                                                                                            | $7.6 \times 10^9$                                                                                                | $11.3 \times 10^9$                                                                                               |

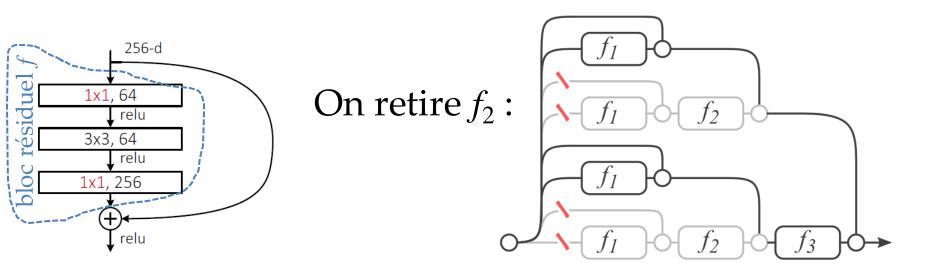
## ResNet: ensemble implicite



- Gradient est atténué dans le résiduel :
  - profondeur effective du gradient est de 10-34 couches (sur 110)

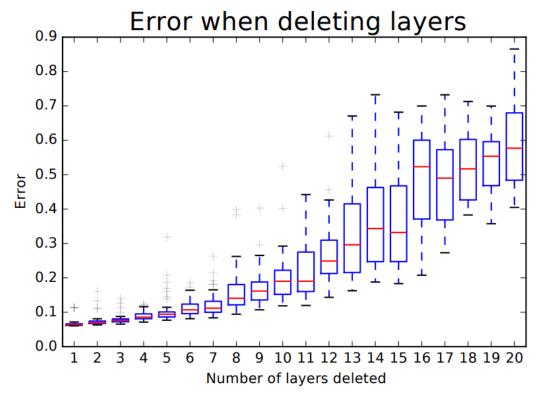
# ResNet: ensemble implicite

- Si l'on retire un bloc résiduel ResNet, on élimine un nombre de sous-réseaux
- Il reste encore  $2^{L-1}$  sous-réseaux



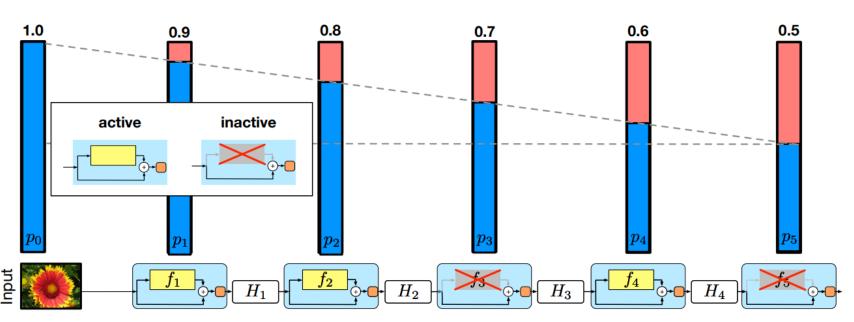
## ResNet: ensemble implicite

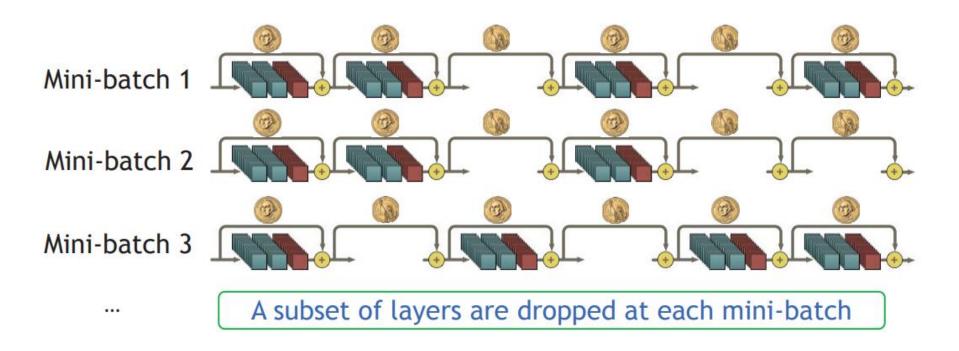
• Retirer des couches en testing pour ResNet



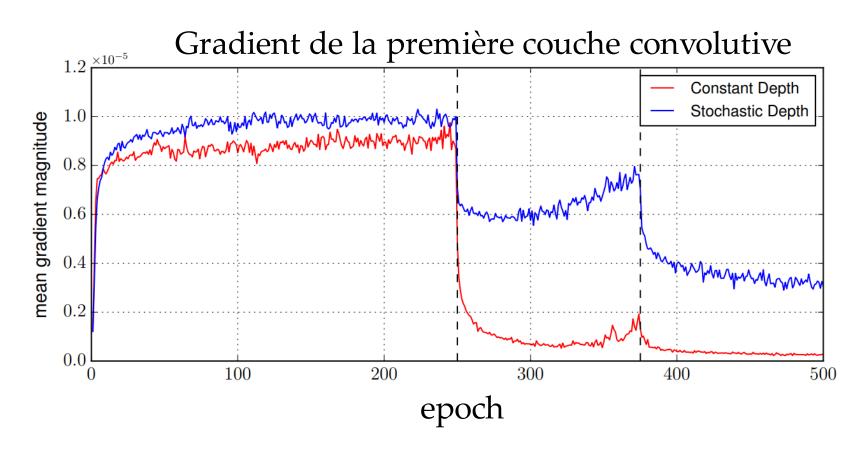
Catastrophique pour VGG!

- Aléatoirement retirer des blocs résiduels lors du training
  - dropout empiriquement inutile selon eux
- Conserver plus souvent les blocs résiduels de bas niveau



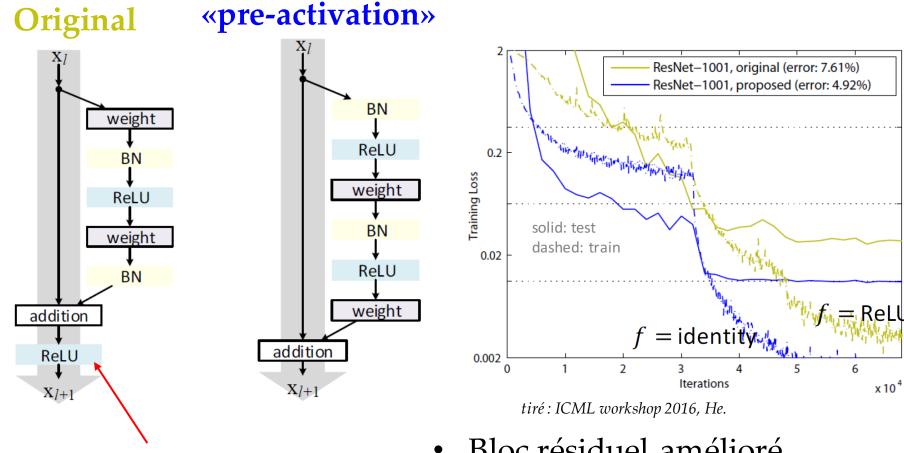


 Améliore le flot du gradient, en réduisant le nombre de couches



- Accélère l'entraînement :
  - réseaux moins profonds sont plus rapides à entraîner
  - -25% moins de calcul (si décroissance linéaire 1→0.5 pour probabilité  $p_l$  droper le bloc l)
- Forme de régularisation
- Utilise le plein réseau en test
  - calibrer les forces des features en fonction de  $p_l$
  - comme avec dropout

# ResNet version preactivation

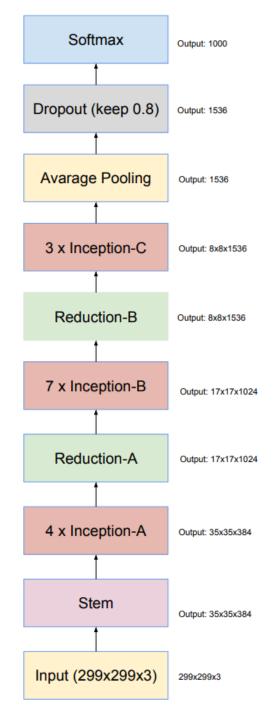


ReLU dans le chemin du gradient

- Bloc résiduel amélioré
- Meilleur flot du gradient
- Améliore les résultats
  - $-6.7\% \rightarrow 4.8\% \text{ top-}5$

Test Error (%)

### Variations de ResNet



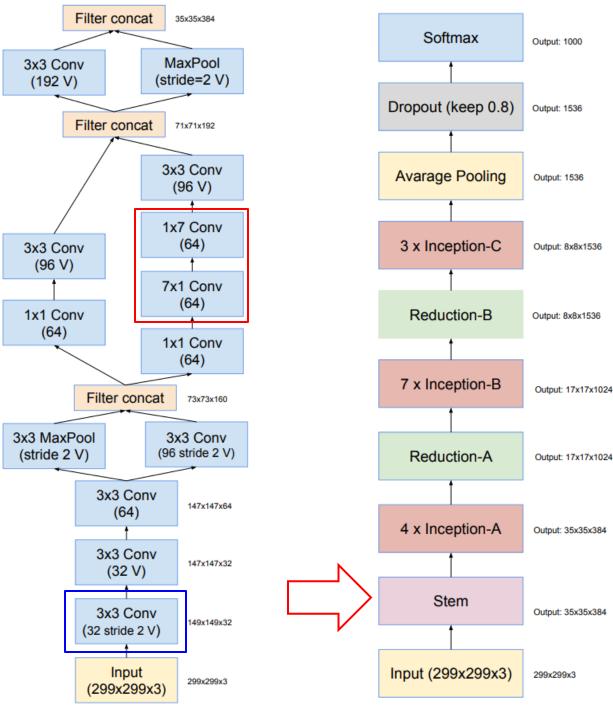
# Incepti

convolutions

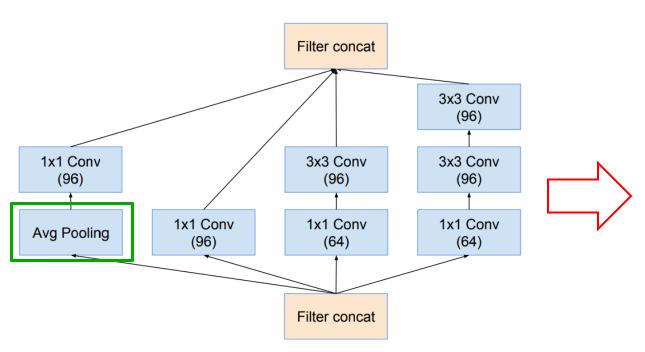
 1x7 et 7x1
 (introduits
 dans v2 et v3)

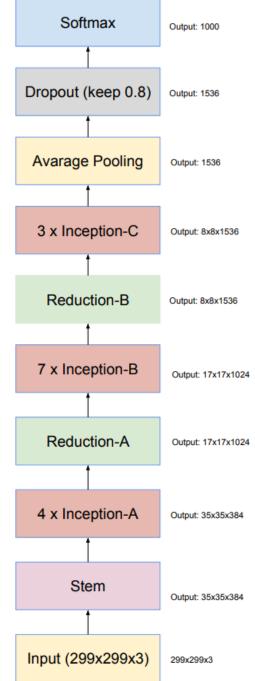
Champ récepteur de 7x7, mais avec 14/49ème param.

 Base a seulement un convolution 3x3, stride 2



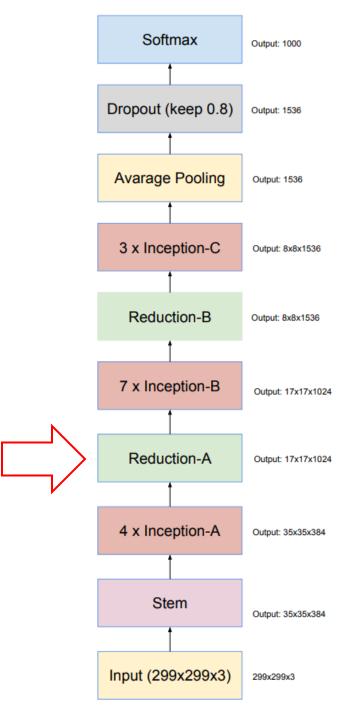
- Les 5x5 ont disparus
- Avg Pooling au lieu de max



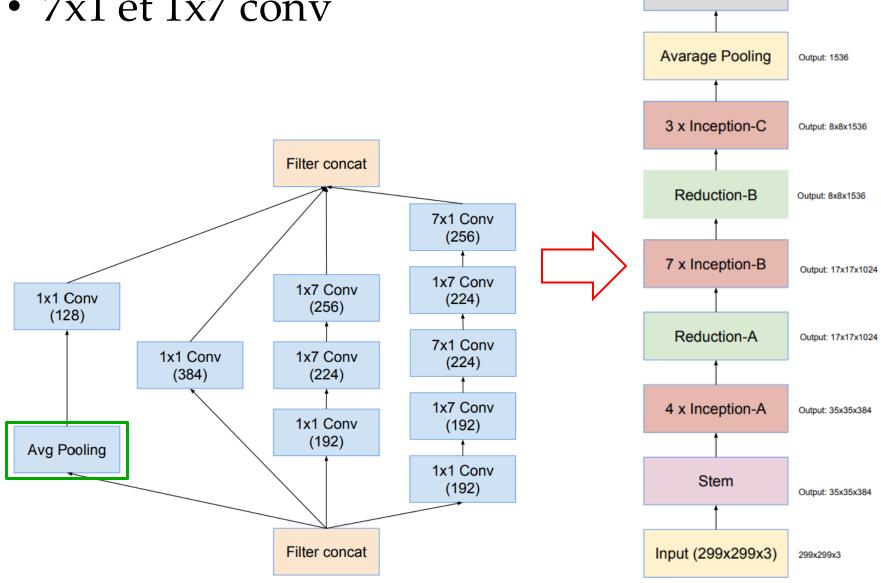


Max Pool





• 7x1 et 1x7 conv

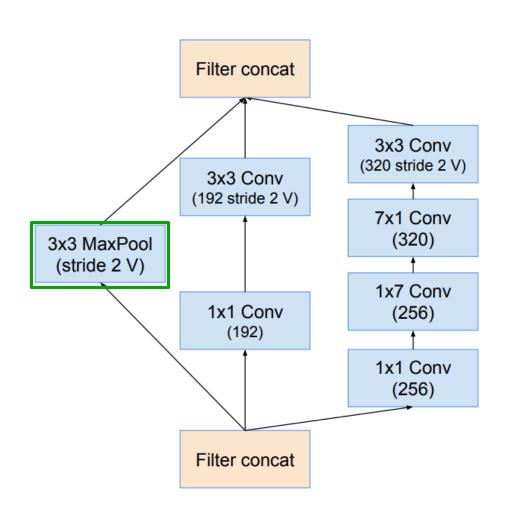


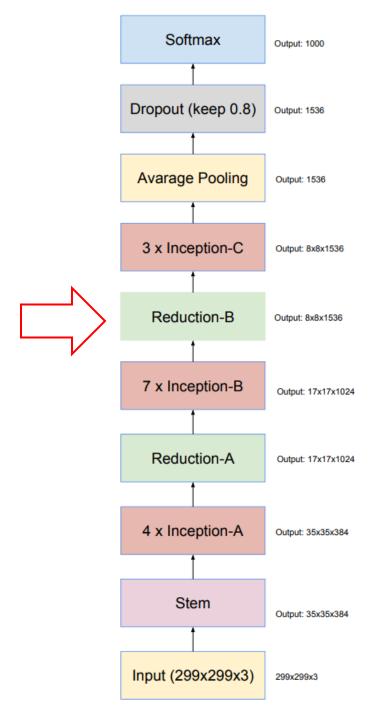
Softmax

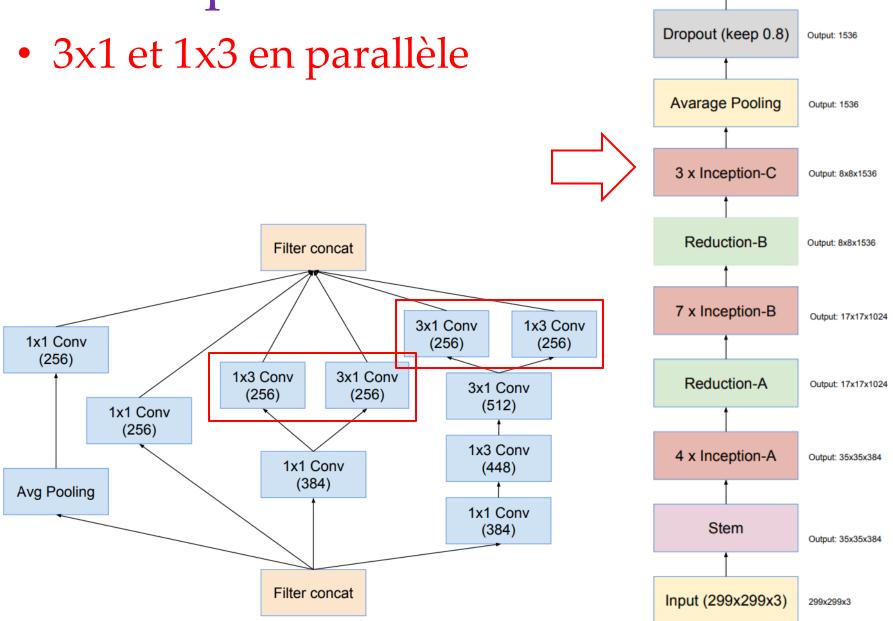
Dropout (keep 0.8)

Output: 1000

Output: 1536







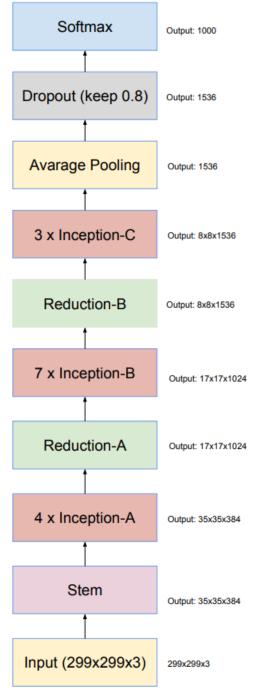
Softmax

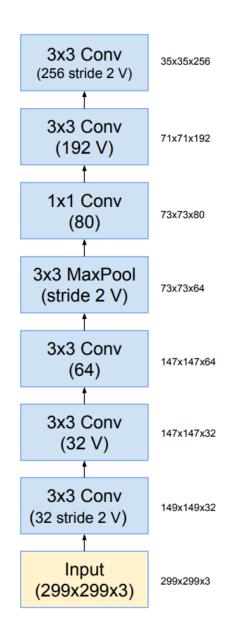
Output: 1000

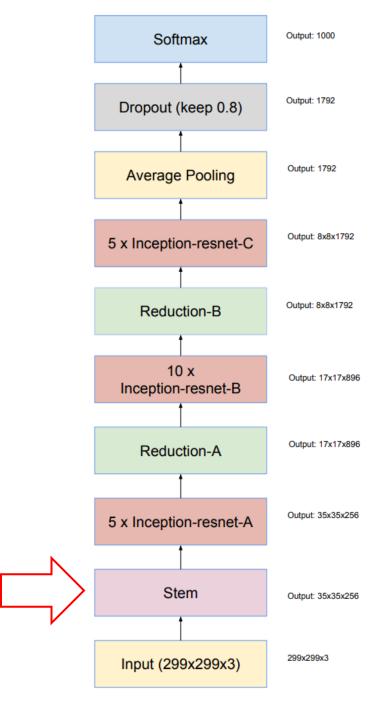
#### Différences avec GoogLeNet

- Couches de réduction plus complexes
- Convolutions avec *stride*≠1
- Aucun 5x5
- 1x7 et 7x1
- 1x3 et 3x1 :
  - en série
  - en parallèle
- etc...

Average pool Max pool Average pool Max pool Average pool







1x1 Conv

(256 Linear)

3x3 Conv

(32)

1x1 Conv

(32)

Relu activation

Relu activation

1x1 Conv (32) Each Inception block is followed by filter-expansion layer (1 × 1 convolution without activation) which is used for scaling up the dimensionality of the filter bank before the addition to match the depth of the input. This is needed to compensate for the dimensionality reduction induced by the Inception block.

3x3 Conv

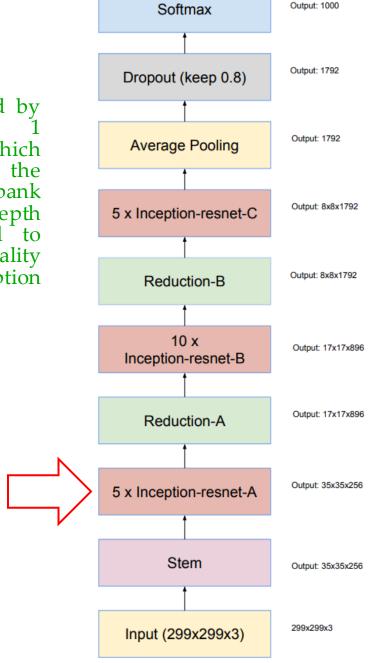
(32)

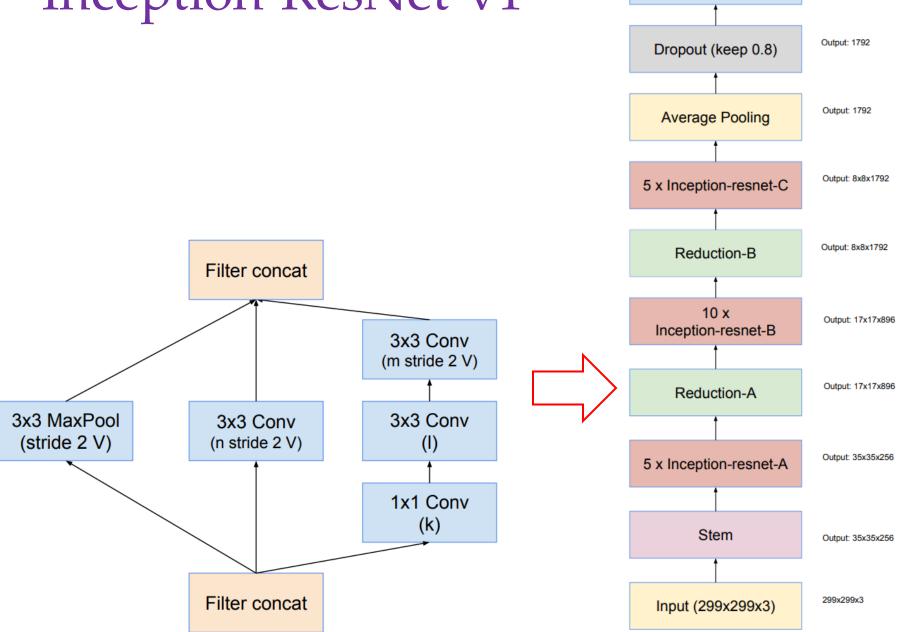
3x3 Conv

(32)

1x1 Conv

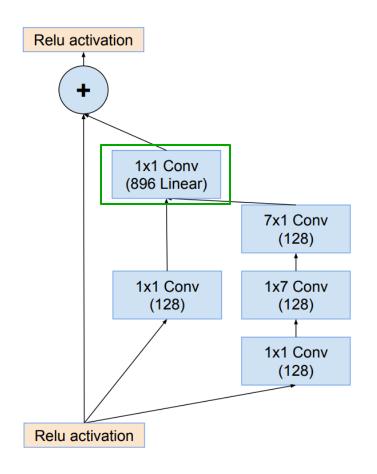
(32)

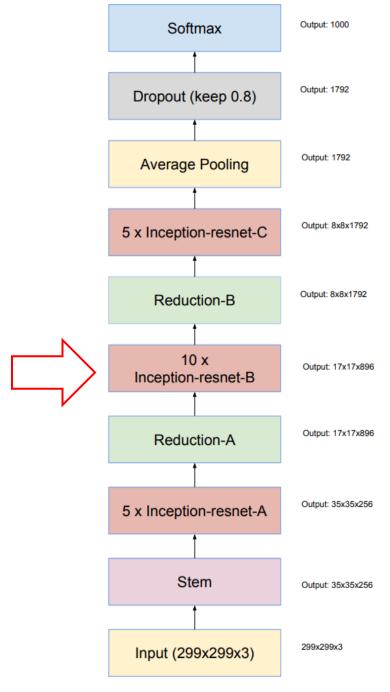


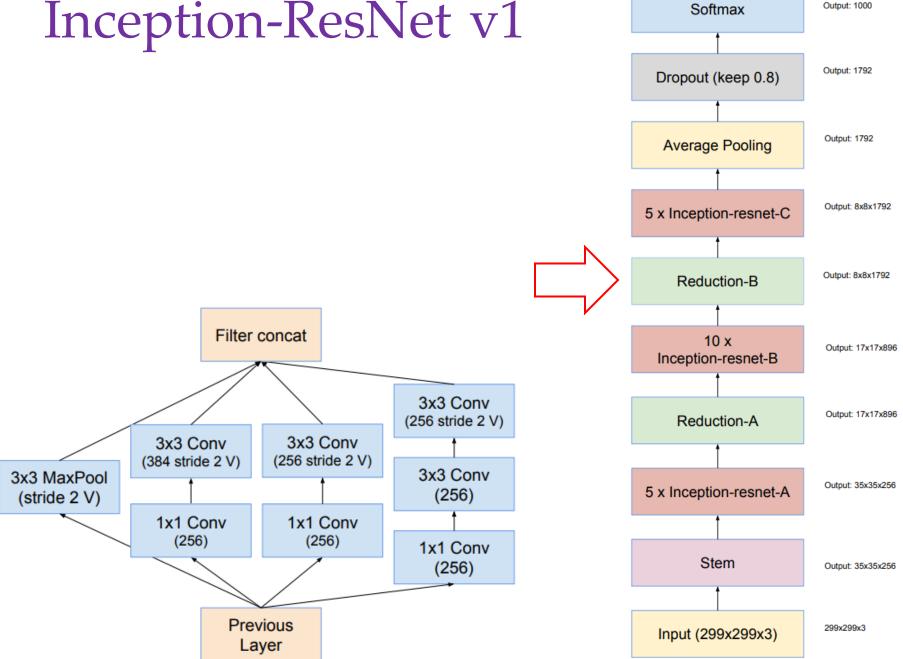


Softmax

Output: 1000

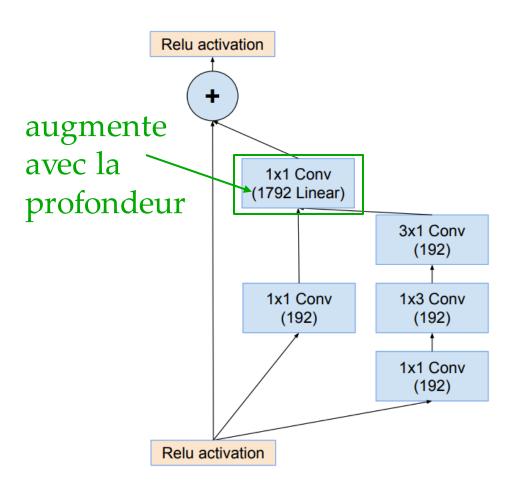


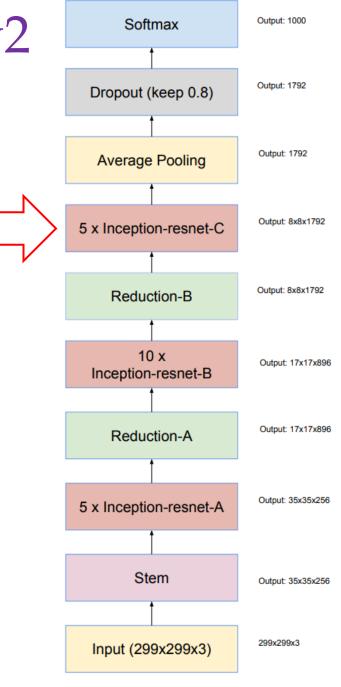




Output: 1000

### Inception-ResNet v1 et v2





#### Résultats

- Connection résiduelle accélère l'entraînement
- Améliore les scores

| Network             | Crops | Top-1 Error | Top-5 Error |
|---------------------|-------|-------------|-------------|
| ResNet-151 [5]      | dense | 19.4%       | 4.5%        |
| Inception-v3 [15]   | 144   | 18.9%       | 4.3%        |
| Inception-ResNet-v1 | 144   | 18.8%       | 4.3%        |
| Inception-v4        | 144   | 17.7%       | 3.8%        |
| Inception-ResNet-v2 | 144   | 17.8%       | 3.7%        |

Table 4. 144 crops evaluations - single model experimental results. Reported on the all 50000 images of the validation set of ILSVRC 2012.

#### Ensembles

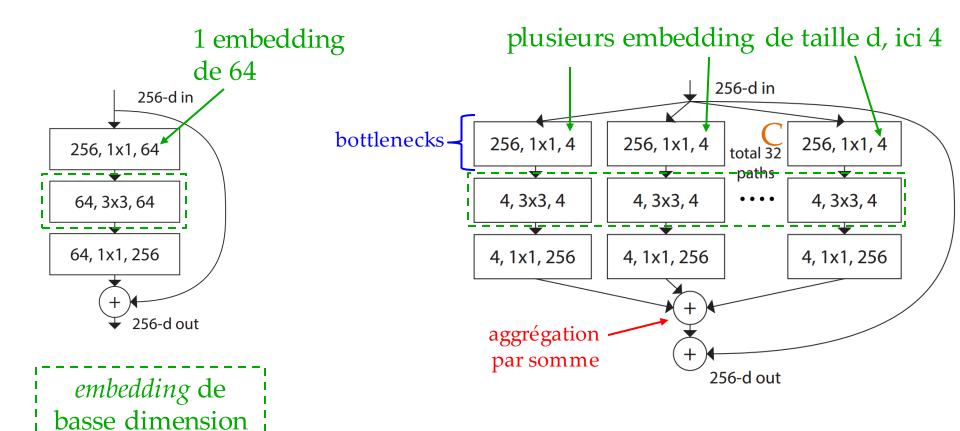
| Network                | Models | Top-1 Error | Top-5 Error |
|------------------------|--------|-------------|-------------|
| ResNet-151 [5]         | 6      | _           | 3.6%        |
| Inception-v3 [15]      | 4      | 17.3%       | 3.6%        |
| Inception-v4 +         | 1      | 16.5%       | 3.1%        |
| 3× Inception-ResNet-v2 | 4      | 10.5%       | 3.170       |

#### ResNeXt

- Architecture multi-branche (comme Inception), mais répète la même topologie (contrairement à Inception)
- Le nombre de branche == *cardinality*
- Prétend qu'il est mieux d'augmenter la cardinality que la profondeur/largeur
- Cherche à améliorer la performance sous un budget fixe de FLOPS et de paramètres

#### ResNeXt

- Inception effectue split-transform-merge
- On peut voir Inception comme étant un sous-espace d'une couche ne contenant que des 5x5
- Le nombre de filtres 1x1, 3x3, 5x5 varie d'une couche à l'autre, difficile à tuner ⊗
- ResNeXt va empruter d'inception la philosophie *split-transform-merge*



| cardinality C         | 1  | 2  | 4  | 8   | 32  |
|-----------------------|----|----|----|-----|-----|
| width of bottleneck d | 64 | 40 | 24 | 14  | 4   |
| width of group conv.  | 64 | 80 | 96 | 112 | 128 |

Table 2. Relations between cardinality and width (for the template of conv2), with roughly preserved complexity on a residual block. The number of parameters is  $\sim$ 70k for the template of conv2. The number of FLOPs is  $\sim$ 0.22 billion (# params $\times$ 56 $\times$ 56 for conv2).

#### ResNeXt

ResNet-50

ResNeXt-50  $(32\times4d)$ output stage  $7 \times 7$ , 64, stride 2  $112 \times 112$  $7 \times 7$ , 64, stride 2 conv1  $3 \times 3$  max pool, stride 2  $3\times3$  max pool, stride 2  $1 \times 1, (64)$  $1 \times 1, (128)$ répétitions ×3 diminution/ 56×56 conv2  $3 \times 3$ , 128, C = 32 $3 \times 3, 64$  $\times 3$ augmentation au mêmerythme  $1 \times 1, 256$  $1 \times 1, 256$  $1 \times 1, (128)$  $1 \times 1, (256)$  $3 \times 3, 128$ conv3  $\times 4$  $3 \times 3$ , 256, C = 32 $\times 4$  $1 \times 1,512$  $1 \times 1,512$  $1 \times 1,256$  $1 \times 1,512$  $\times 6$ conv4  $14 \times 14$  $3 \times 3,256$  $\times 6$  $3\times3$ , 512, C=32 $1 \times 1, 1024$  $1 \times 1, 1024$  $1 \times 1, 1024$  $1 \times 1,512$  $3 \times 3,512$  $\times 3$  $\times 3$ conv5  $3\times3$ , 1024, C=32 $7 \times 7$  $1 \times 1,2048$  $1 \times 1,2048$ global average pool global average pool  $1 \times 1$ 1000-d fc, softmax 1000-d fc, softmax  $25.5 \times 10^6$  $25.0 \times 10^6$ # params. **4.1** $\times 10^9$  $4.2 \times 10^9$ **FLOPs** 

#### ResNeXt: Résultats

sardinality

bottleneck

|           |             |   | setting        | top-1 error (%) |
|-----------|-------------|---|----------------|-----------------|
| e e,      | ResNet-50   |   | 1 × 64d        | 23.9            |
| 11.11.    | ResNeXt-50  |   | $2 \times 40d$ | 23.0            |
| acila     | ResNeXt-50  |   | $4 \times 24d$ | 22.6            |
| im.       | ResNeXt-50  |   | $8 \times 14d$ | 22.3            |
| Si.C      | ResNeXt-50  | L | $32 \times 4d$ | 22.2            |
| - a a     | ResNet-101  |   | 1 × 64d        | 22.0            |
| i; ii     | ResNeXt-101 |   | $2 \times 40d$ | 21.7            |
| ac<br>ila | ResNeXt-101 |   | $4 \times 24d$ | 21.4            |
| ap        | ResNeXt-101 |   | $8 \times 14d$ | 21.3            |
| S: C      | ResNeXt-101 | Ц | $32 \times 4d$ | 21.2            |

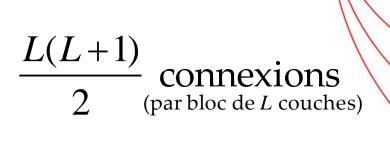
Table 3. Ablation experiments on ImageNet-1K. (**Top**): ResNet-50 with preserved complexity ( $\sim$ 4.1 billion FLOPs); (**Bottom**): ResNet-101 with preserved complexity ( $\sim$ 7.8 billion FLOPs). The error rate is evaluated on the single crop of 224×224 pixels.

#### Si on double la capacité

|                     | setting          | top-1 err (%) | top-5 err (%) |
|---------------------|------------------|---------------|---------------|
| 1× complexity refer | ences:           |               |               |
| ResNet-101          | 1 × 64d          | 22.0          | 6.0           |
| ResNeXt-101         | $32 \times 4d$   | 21.2          | 5.6           |
| 2× complexity mode  | els follow:      |               |               |
| ResNet-200 [15]     | 1 × 64d          | 21.7          | 5.8           |
| ResNet-101, wider   | 1 × <b>100</b> d | 21.3          | 5.7           |
| ResNeXt-101         | <b>2</b> × 64d   | 20.7          | 5.5           |
| ResNeXt-101         | <b>64</b> × 4d   | 20.4          | 5.3           |

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to  $2\times$  of ResNet-101's. The error rate is evaluated on the single crop of  $224\times224$  pixels. The highlighted factors are the factors that increase complexity.

Couches peu larges : 12 filtres



- Ajoute encore plus de skip connections
- N'additionne pas : fait une concaténation des features des couches précédentes concaténation

BN-RelsU-Conv

ResNet: 
$$\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1}) + \mathbf{x}_{\ell-1}$$
.

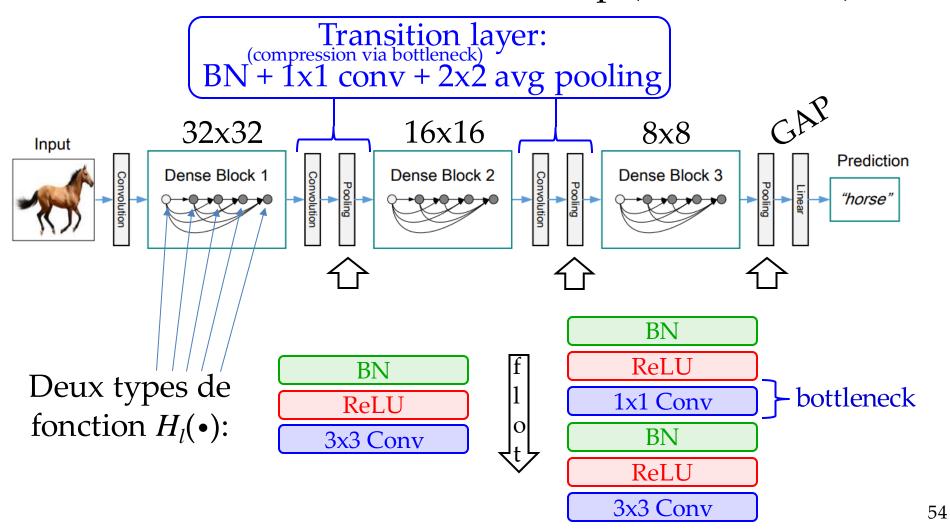
ResNet: 
$$\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1}) + \mathbf{x}_{\ell-1}$$
 DenseNet:  $\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$ 

BN-Rely-Conv

Transition Layer

- Diminue vanishing gradient
- Augmente la propagation et réutilisation de *features*
- Semble régulariser
- Réduit le nombre de paramètres :
  - Conv standard : doit apprendre implicitement quels features laisser passer
  - ResNet : explicite, mais certaines couches contribuent peu (voir Stoch. Depth), donc des poids inutiles

• Connection vers toutes les couches subséquentes qui ont la même taille de feature map (Dense Block)



## DenseNet (ImageNet)

| Layers           | Output Size    | DenseNet-121                                                               | DenseNet-169                                                                   | DenseNet-201                                                                     | DenseNet-264                                                               |  |  |  |  |
|------------------|----------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Convolution      | 112 × 112      | $7 \times 7$ conv, stride 2                                                |                                                                                |                                                                                  |                                                                            |  |  |  |  |
| Pooling          | 56 × 56        |                                                                            | $3 \times 3 \max p$                                                            | oool, stride 2                                                                   |                                                                            |  |  |  |  |
| Dense Block      | 56 × 56        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$   | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$  |  |  |  |  |
| (1)              | 30 × 30        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$         | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$             | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$               | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$         |  |  |  |  |
| Transition Layer | 56 × 56        |                                                                            | 1 × 1                                                                          | conv                                                                             |                                                                            |  |  |  |  |
| (1)              | $28 \times 28$ |                                                                            | 2 × 2 average                                                                  | pool, stride 2                                                                   |                                                                            |  |  |  |  |
| Dense Block      | $28 \times 28$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 1 \end{bmatrix} \times 12$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$         | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$ |  |  |  |  |
| (2)              | 20 × 20        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$            | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$              | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$        |  |  |  |  |
| Transition Layer | $28 \times 28$ |                                                                            | $1 \times 1 \text{ conv}$                                                      |                                                                                  |                                                                            |  |  |  |  |
| (2)              | $14 \times 14$ |                                                                            | $2 \times 2$ average pool, stride 2                                            |                                                                                  |                                                                            |  |  |  |  |
| Dense Block      | 14 × 14        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 24$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$     | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 64$ |  |  |  |  |
| (3)              | 14 × 14        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$              | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 46}$              | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 04}$        |  |  |  |  |
| Transition Layer | 14 × 14        |                                                                            | 1 × 1                                                                          | conv                                                                             |                                                                            |  |  |  |  |
| (3)              | 7 × 7          |                                                                            | 2 × 2 average                                                                  | pool, stride 2                                                                   |                                                                            |  |  |  |  |
| Dense Block      | 7 × 7          | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$                  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix} \times 32$ | $1 \times 1 \text{ conv} \times 48$                                        |  |  |  |  |
| (4)              | / × /          | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$        | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$              | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$                          | $\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 46}$        |  |  |  |  |
| Classification   | 1 × 1          |                                                                            | $7 \times 7$ global                                                            | average pool                                                                     |                                                                            |  |  |  |  |
| Layer            |                | 1000D fully-connected, softmax                                             |                                                                                |                                                                                  |                                                                            |  |  |  |  |

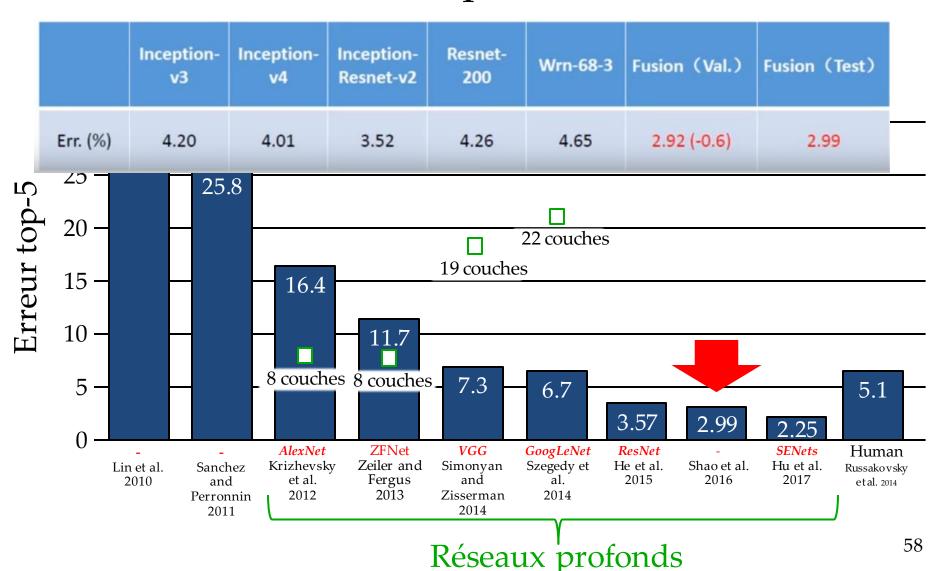
Sans data (effet régularisateur) augm.

| Method                            | Depth | Params | C10    | C10+ | C100   | C100+ | SVHN  | •              |
|-----------------------------------|-------|--------|--------|------|--------|-------|-------|----------------|
| Network in Network [22]           | -     | -      | 10.41  | 8.81 | 35.68  | -     | 2.35  | ,              |
| All-CNN [32]                      | -     | -      | 9.08   | 7.25 | -      | 33.71 | -     |                |
| Deeply Supervised Net [20]        | -     | -      | 9.69   | 7.97 | -      | 34.57 | 1.92  |                |
| Highway Network [34]              | -     | -      | -      | 7.72 | -      | 32.39 | -     |                |
| FractalNet [17]                   | 21    | 38.6M  | 10.18  | 5.22 | 35.34  | 23.30 | 2.01  | •              |
| with Dropout/Drop-path            | 21    | 38.6M  | 7.33   | 4.60 | 28.20  | 23.73 | 1.87  |                |
| ResNet [11]                       | 110   | 1.7M   | -      | 6.61 | -      | -     | -     |                |
| ResNet (reported by [13])         | 110   | 1.7M   | 13.63  | 6.41 | 44.74  | 27.22 | 2.01  | •              |
| ResNet with Stochastic Depth [13] | 110   | 1.7M   | 11.66  | 5.23 | 37.80  | 24.58 | 1.75  | ,              |
| taille similaire                  | 1202  | 10.2M  | -      | 4.91 | -      | -     | -     |                |
| Wide ResNet [42]                  | 16    | 11.0M  | -      | 4.81 | -      | 22.07 | -     |                |
|                                   | 28    | 36.5M  | -      | 4.17 | -      | 20.50 | -     |                |
| with Dropout                      | 16    | 2.7M   | -      | -    | -      | -     | 1.64  |                |
| ResNet (pre-activation) [12]      | 164   | 1.7M   | 11.26* | 5.46 | 35.58* | 24.33 |       | •11 • •1 •     |
|                                   | 1001  | 10.2M  | 10.56* | 4.62 | 33.47* | 22.71 | . ţa: | ille similaire |
| DenseNet $(k = 12)$               | 40    | 1.0M   | 7.00   | 5.24 | 27.55  | 24.42 | 1.79  | •              |
| DenseNet $(k = 12)$               | 100   | 7.0M   | 5.77   | 4.10 | 23.79  | 20.20 | 1,67  |                |
| DenseNet $(k = 24)$               | 100   | 27.2M  | 5.83   | 3.74 | 23.42  | 19.25 | 1.59  |                |
| DenseNet-BC $(k = 12)$            | 100   | 0.8M   | 5.92   | 4.51 | 24.15  | 22.27 | 1.76  | 1              |
| DenseNet-BC $(k = 24)$            | 250   | 15.3M  | 5.19   | 3.62 | 19.64  | 17.60 | 1.74  |                |
| DenseNet-BC $(k = 40)$            | 190   | 25.6M  | -      | 3.46 | -      | 17.18 | -     | _              |
|                                   |       |        |        |      |        |       |       | *              |

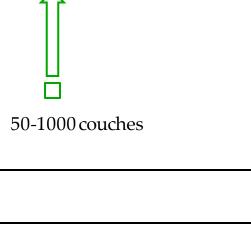
**Table 2:** Error rates (%) on CIFAR and SVHN datasets. k denotes network's growth rate. Results that surpass all competing methods are **bold** and the overall best results are **blue**. "+" indicates standard data augmentation (translation and/or mirroring). \* indicates results run by ourselves. All the results of DenseNets without data augmentation (C10, C100, SVHN) are obtained using Dropout. DenseNets achieve lower error rates while using fewer parameters than ResNet. Without data augmentation, DenseNet performs better by a large margin.

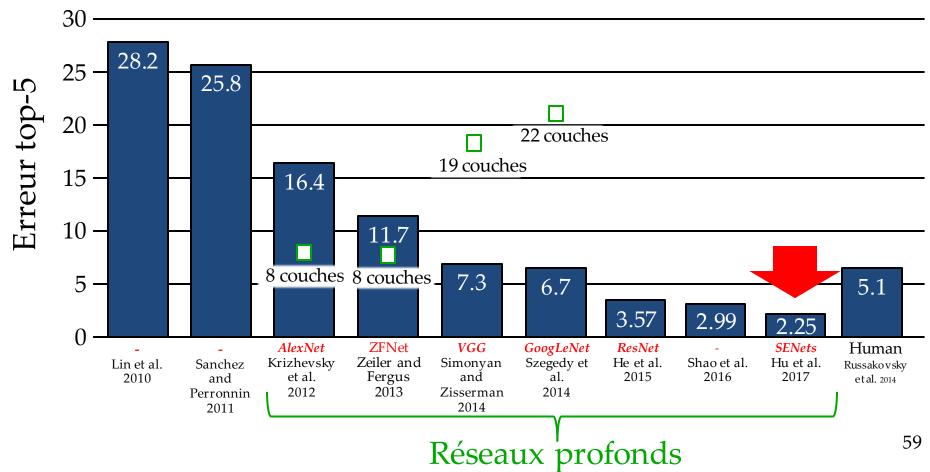
### Large Scale Visual Recognition Challenge

Shao et al. : ensemble, peu intéressant



#### Large Scale Visual Recognition Challenge



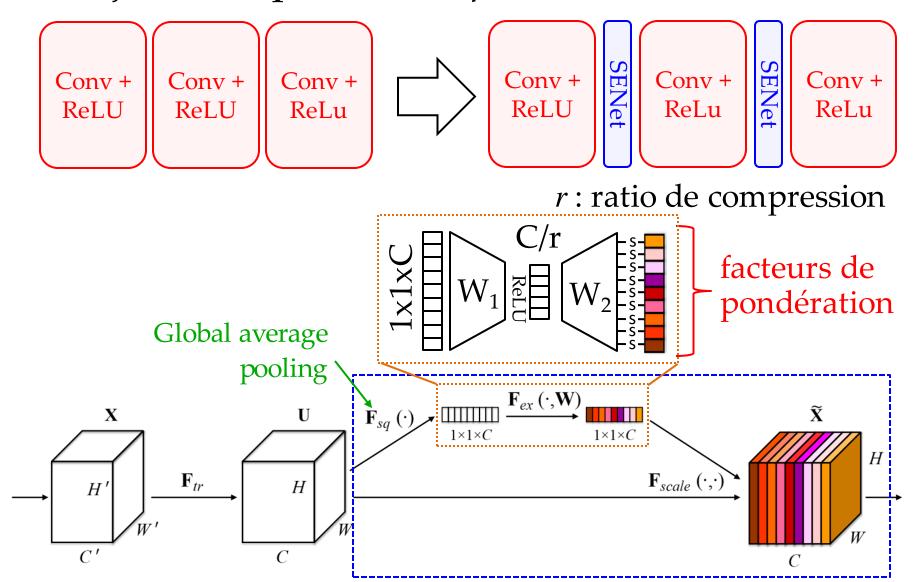


## Squeeze and Excite Net: SENet

- Exemple de microarchitecture
- convnet standard entremêle l'information spatiale et du domaine des features

- SENet: pondérer les *feature maps* **globalement** avec un micro-réseau
- Ajoute très peu de paramètres et de calcul
  - architectures sont déjà larges
- Idée du bottleneck qui revient

• Ajout tel-que-tel (*drop-in*)

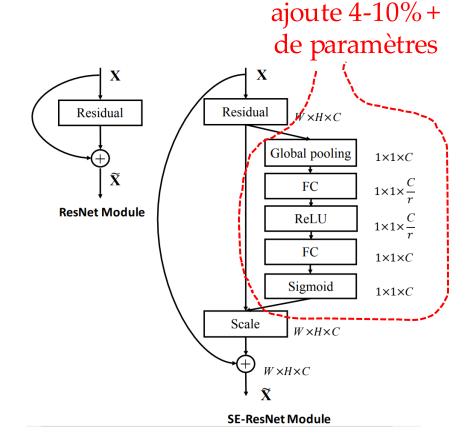


- Modéliser les interdépendances entre *feature maps* avec un micro-réseau
- Appelle ce mécanisme feature recalibration
- Forme d'**attention**, mais selon les *feature* map
- Utilise information globale pour rehausser des *features* utiles et réprimer les moins utiles

- Testés sur différentes architectures
  - ResNet
  - Inception et Inception-ResNet

- ResNeXt

X X Inception Inception  $W \times H \times C$  $\tilde{\mathbf{X}}$ Global pooling  $1 \times 1 \times C$ **Inception Module** FC  $1\times1\times\frac{C}{r}$ ReLU  $1\times1\times\frac{C}{r}$ FC  $1 \times 1 \times C$ Sigmoid  $1 \times 1 \times C$ Scale  $W \times H \times C$  $\widetilde{\mathbf{X}}$ **SE-Inception Module** 



### SENet: Résultats ImageNet

Différence négligeable en calcul

|                          | original         |                 | re-ii | re-implementation |          |                  | SENet           |          |
|--------------------------|------------------|-----------------|-------|-------------------|----------|------------------|-----------------|----------|
|                          | top-1            | top-5           | top-1 | top-5             | GFLOPs   | top-1            | top-5           | GFLOPs   |
|                          | err.             | err.            | err.  | err.              | Of LOT'S | err.             | err.            | Of LOT'S |
| ResNet-50 [9]            | 24.7             | 7.8             | 24.80 | 7.48              | 3.86     | $23.29_{(1.51)}$ | $6.62_{(0.86)}$ | 3.87     |
| ResNet-101 [9]           | 23.6             | 7.1             | 23.17 | 6.52              | 7.58     | $22.38_{(0.79)}$ | $6.07_{(0.45)}$ | 7.60     |
| ResNet-152 [9]           | 23.0             | 6.7             | 22.42 | 6.34              | 11.30    | $21.57_{(0.85)}$ | $5.73_{(0.61)}$ | 11.32    |
| ResNeXt-50 [43]          | 22.2             | -               | 22.11 | 5.90              | 4.24     | $21.10_{(1.01)}$ | $5.49_{(0.41)}$ | 4.25     |
| ResNeXt-101 [43]         | 21.2             | 5.6             | 21.18 | 5.57              | 7.99     | $20.70_{(0.48)}$ | $5.01_{(0.56)}$ | 8.00     |
| BN-Inception [14]        | 25.2             | 7.82            | 25.38 | 7.89              | 2.03     | $24.23_{(1.15)}$ | $7.14_{(0.75)}$ | 2.04     |
| Inception-ResNet-v2 [38] | $19.9^{\dagger}$ | $4.9^{\dagger}$ | 20.37 | 5.21              | 11.75    | $19.80_{(0.57)}$ | $4.79_{(0.42)}$ | 11.76    |
|                          |                  |                 |       |                   |          |                  |                 |          |

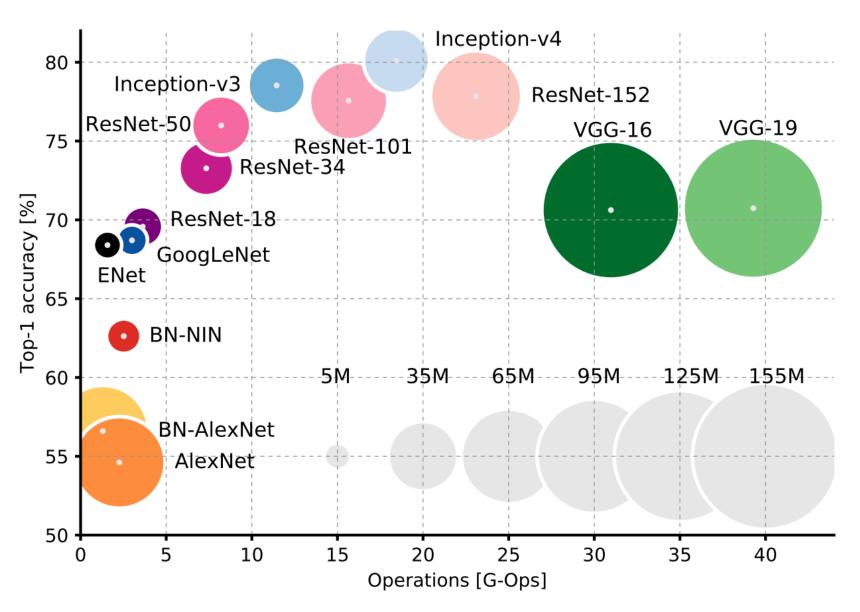
Gains partout

|              | Ratio r    | top-1 err. | top-5 err. | model size (MB) |
|--------------|------------|------------|------------|-----------------|
|              | 4          | 23.21      | 6.63       | 137             |
| ur           | 8          | 23.19      | 6.64       | 117             |
| lis          | <b>1</b> 6 | 23.29      | 6.62       | 108             |
| va<br>ıti    | 32         | 23.40      | 6.77       | 103             |
| ָר רֻ רַרָּי | original   | 24.80      | 7.48       | 98              |
|              |            | •          |            |                 |

Facteur de réduction de dimensionnalité

- Rôle joué semble varier en fonction de la profondeur
  - en bas, les excitations des features sont peu corrélées avec la classe
  - en haut, les excitations des *features* sont plus spécialisés (en fonction de la classe)

#### Efficacité des réseaux

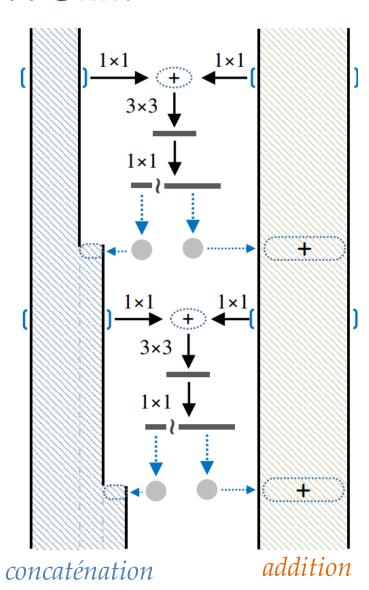


A. Canziani et al. An Analysis of Deep Neural Network Models for Practical Applications, 2017.

### Autres architectures

#### Dual Path network

- À chaque bloc, devrait-on:
  - additionner, ou
  - concaténer
- ResNet: additionne
- Inception : concatène
- DenseNet : concatène
- Dual Path: fait les deux!

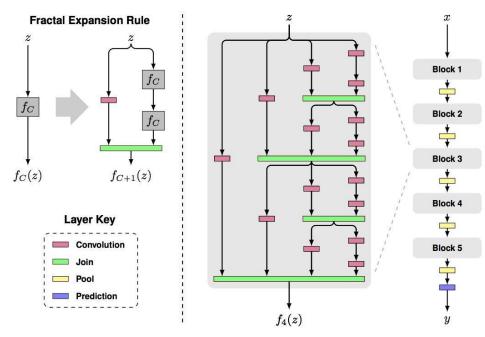


#### FractalNet

#### FractalNet: Ultra-Deep Neural Networks without Residuals

[Larsson et al. 2017]

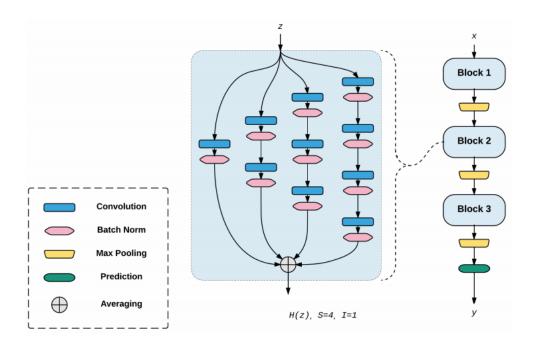
- Argues that key is transitioning effectively from shallow to deep and residual representations are not necessary
- Fractal architecture with both shallow and deep paths to output
- Trained with dropping out sub-paths
- Full network at test time



Figures copyright Larsson et al., 2017. Reproduced with permission.

tiré de : cs231n, Université Stanford

#### CresendoNet



#### CresendoNet

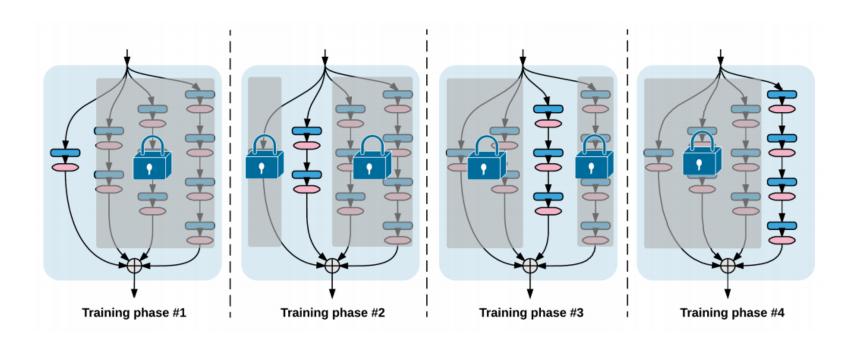


Figure 2: Path-wise training procedure.

#### Drop-path

## SqueezeNet

## SqueezeNet: AlexNet-level Accuracy With 50x Fewer Parameters and <0.5Mb Model Size

[landola et al. 2017]

- Fire modules consisting of a 'squeeze' layer with 1x1 filters feeding an 'expand' layer with 1x1 and 3x3 filters
- AlexNet level accuracy on ImageNet with 50x fewer parameters
- Can compress to 510x smaller than AlexNet (0.5Mb)

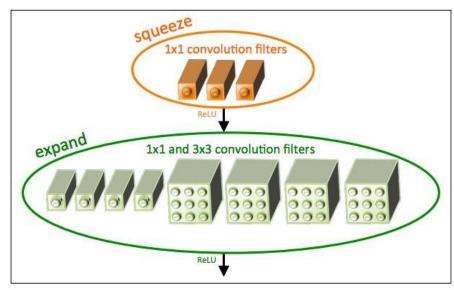


Figure copyright landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.

tiré de : cs231n, Université Stanford

# Fin!