
Philippe Giguère

Plan de cours

Introduction

Fonctions d’activation

Plan de cours

Bienvenue à bord!

• 1ere édition

• L’équipe :

Mathieu
Carpentier

Alexandre
Gariépy

Laboratoires

Ludovic
Trottier

Semaine #3
Optimisation

Cumul de 5 ans+ de Deep Learning

Bienvenue à bord!

• 2e édition

• L’équipe :

Nicolas
Garneau

Ressources GPU

• Accès à des GPU via Jupyter notebook

– NVIDIA K20

• https://jupyter.calculquebec.ca/

• Cœurs réservés pour les laboratoires :
réservation glo4030

• Gros merci à

– Florent Parent

– Félix-Antoine Fortin

5

https://jupyter.calculquebec.ca/

Ressources GPU

• Google Cloud Platform

– Envoyez-moi un courriel pour obtenir un
crédit

• Amazon Web Services

– Crédits étudiants + Github education

6

Manuel (obligatoire)

• Bonne référence

• Version html gratuite
http://www.deeplearningbook.org/

7

Pré-requis

• Python (laboratoire, TP)

• Certaine connaissance du machine
learning

• Probabilité

• Algèbre linéaire

• Dérivée

• Un peu d’optimisation

8

Contenu du cours
• Un peu de théorie, oui…

• … mais aussi de la pratique…

• … et de la collection de timbres

– nombre de techniques, trucs

– 20+ exemples d’architecture

– grand nombre de papiers

• 30+ présentations orales

• Donner un aperçu du domaine,
vous aider à démarrer dans la
recherche

9

“All science is either
physics or stamp

collecting”
–E. Rutherford

Aperçu 1ère moitié

• Connaissances de base (vertical)

– Introduction, neurone, fondement apprentissage
machine, fonctions d’activation

– Graphes de calculs, fonctions de perte, rétro-
propagation

– Méthodes d’entraînement par optimisation, batch
norm, initialisation des poids, trucs et astuces

– Techniques de régularisation

– Réseaux à convolution I

– Réseaux à convolution II

– Examen intra

10

Aperçu 2ème moitié

• Concepts avancés (horizontal) :

– Word embeddings

– Autoencodeurs

– Réseaux récurrents (RNN, LSTM et GRU)

– Modèles d’attention, proposition de régions
d’images, réseaux à mémoire

– Apprentissage multitâches, pertes auxiliaires

– Distillation (compression) des réseaux

– Réseaux génératifs

– Et +

11Présentations affiches des étudiants 2e et 3e cycle

Présentations affiches GLO-7030
• Sur votre travail de session

• Présentation style "poster session" en
conférence

• Compte pour 12 %

13

Librairie utilisée :
• Recommandation unanime des experts locaux (ils

ont utilisés Theano, TensorFlow, Torch, Keras)

• Python, et non pas LUA
• Facile à débugger

– Vous pouvez extraire les données du GPU en tout
temps

• Dérivation automatique autograd
• Support GPU pour Ndarray
• Package d’optimisation par descente de gradient

inclus (SGD, RMSprop, ADAM, etc.)
• Beaucoup d’utilitaires (data loading,

entraînement, data augmentation, torchvision
etc.)

• Facile d’obtenir des modèles pré-entraînés
14

http://pytorch.org/about/

Examen

• Mi-Session

– 35% pour GLO-4030

– 33% pour GLO-7030

• Final

– GLO-4030 seulement

– Examen de 2 heures, 20 %

• Pas de documents permis

15

Travaux pratiques

• 2 travaux

• Dans la première moitié du cours

• Total de 20 %

• En python ou PyTorch

16

Projets
• Équipe de 1 à 2

• GLO-4030 : 25 %

• Pour GLO-7030 : 35 %
– comme pas d’examen, projet devra être

ambitieux (proche de publiable)

– bonne méthodologie

• Trouvez un jeu de données proche de
votre recherche / laboratoire / programme

• Vous pouvez utiliser langage et libraire de
votre choix (TensorFlow, PyTorch, etc)

• Rapport sous format d’article scientifique
17

Sites web

• Site du cours :
https://ulaval-damas.github.io/glo4030/

• Site pour le forum :

– Forum MonPortail

18

https://ulaval-damas.github.io/glo4030/

Introduction

Large Scale Visual Recognition Challenge

20

0

5

10

15

20

25

30

SENets
Hu et al.

2017

-
Shao et al.

2016

28.2
25.8

3.57 2.99 2.25

5.1

Human
Russakovsky

et al. 2014

ResNet
He et al.

2015

6.7

GoogLeNet
Szegedy et

al.
2014

11.7

ZFNet
Zeiler and

Fergus
2013

7.3

VGG
Simonyan

and
Zisserman

2014

16.4

AlexNet
Krizhevsky

et al.
2012

-
Sanchez

and
Perronnin

2011

-
Lin et al.

2010

Réseaux profonds

• Image Classification Challenge :
– 1,000 classes d’objets

– 1,431,167 images

R
en

aissan
ce

E
rr

eu
r

to
p

-5

Causes de la renaissance #1

21

pré-
2006

Vanishing gradient

Crédit : L. Trottier

Nouvelles fonctions d’activations

Causes de la renaissance #1

• ReLU : Rectifier Linear Unit

• Introduite en 2010 par Nair et Hinton

• Se calcule très rapidement : max(input,0)

• Beaucoup moins de vanishing gradient, car
pente = 1 dans la partie active

22

Nouvelles fonctions d’activations

Causes de la renaissance #2
• Grands jeux de données
• www.image-net.org
• 14 millions images, 22 000 catégories

23

Causes de la renaissance #3

24

Novembre 2001

12,000

Puissance de calcul via GPU

1,800 CADAoût 2016

25

Juin 2005

110

2,995 USD

Causes de la renaissance #3
Puissance de calcul via GPU

Décembre 2017

Continuation de la renaissance

• Progrès très rapide avec arXiv.org

• Plus d’une dizaine de soumission par jour

• L’article est souvent périmé lorsque
présenté en conférence

26

ca. 1990 ca. 2017

Évolution des réseaux

27

tanh

Average pooling

SGD

5 couches

32 filtres

10,000
exemples

Crédit photo : Griffin’s auto repair

1000
couches

ReLU

Drop-out

Batch norm

Xavier
Initialization

Pré-
entraînement

ImageNet

Squeeze-
and-Excite

Data
augmentation

Early
stopping

Adam

3,000+ filtres

Max
pooling

Global
average
pooling

Ensemble

Multitâche

Crédit photo : wildsau.ca

Skip
connections

Convolutions
à trous

geler des
couches

lr scheduling

Pourquoi le Deep?
• Fonction mathématique extrêmement

flexible et puissante (millions de
paramètres)

• Théorème d’approximation universelle :

– Peut approximer n’importe quelle fonction*
avec un niveau de précision arbitraire

– http://neuralnetworksanddeeplearning.com/chap4.html

• Réseaux peu profonds vont :

– demander beaucoup de neurones
(exponentiel)

28*continue sur des sous-ensembles compacts de Rn

http://neuralnetworksanddeeplearning.com/chap4.html

Généralisation vs. profondeur
• Street View Home Numbers SVHN

29Goodfellow et al., Multi-digit Number Recognition from Street View Imagery
using Deep Convolutional Neural Networks, ICLR 2014.

Meilleure généralisation
• Modèles larges ou peu profonds ont

tendance à overfitter

30Goodfellow et al., Multi-digit Number Recognition from Street View Imagery
using Deep Convolutional Neural Networks, ICLR 2014.

S
V

H
N

32

Contraste avec
approches

traditionnelles
Appris
conjointement

Hand-
designed
program

Hand-
designed
features

Input Input InputInput

Output

Output Output

Output

Mapping
from

features

Mapping
from

features

Mapping
from

features

Features
Simple
features

Additional
layers of

more
abstract
features

Representation
Learning

Deep
Learning

Rule-
based

systems

Classic
machine
learning

Architecture = a priori
• Façon d’injecter de l’information a priori, via

l’architecture

• Peut être vu comme un prior (parfois
infiniment) fort

• Par exemple :
– CNN (localité dans les images)

– Maxpooling (invariance à la position)

– RNN (dépendance temporelle)

– Attention (régions plus informatives)

– Spatial transformer network (déformation
affines)

– Softmax (appartenance à une seule classe)
33

Pourquoi le Deep en industrie ?
• Applicable à des solutions industrielles

• Entraînement (long) se fait en différé

• Tourne en temps réel sur machine GPU ou
TPU (Tensor Processor Unit, Google)

• Le temps d’exécution dépend peu du
nombre de classes

– YOLO9000 : détection

de 9000 objets, 40 FPS

– comment : un seul pipeline

commun d’extraction des

features https://www.youtube.com/watch?v=uG2UOasIx2I

Pourquoi le Deep en industrie ?

• Si on découvre des nouveaux cas
problématiques, on les ajoute dans la
banque d’entrainement

– facile à expliquer à un non-expert

• La quantité de données d’entraînement
n’influe pas sur le temps d’inférence*

• Systèmes experts (explicite) deviennent
fragiles avec nombre croissant de règles

– réseaux (et ML) : implicite

36
*bien entendu, on pourrait augmenter la taille du réseau si on a
beaucoup de données, afin d’en profiter

Deep Learning is eating software
The pattern is that there’s an existing software project doing data
processing using explicit programming logic, and the team charged
with maintaining it find they can replace it with a deep-learning-based
solution. I can only point to examples within Alphabet that we’ve made
public, like upgrading search ranking, data center energy usage,
language translation, and solving Go, but these aren’t rare exceptions
internally. What I see is that almost any data processing system with
non-trivial logic can be improved significantly by applying modern
machine learning.

This might sound less than dramatic when put in those terms, but it’s a
radical change in how we build software. Instead of writing and
maintaining intricate, layered tangles of logic, the developer has to
become a teacher, a curator of training data and an analyst of results.
This is very, very different than the programming I was taught in
school, but what gets me most excited is that it should be far more
accessible than traditional coding, once the tooling catches up.

https://petewarden.com/2017/11/13/deep-learning-is-eating-software/

37

Transfert d’innovation

• Les innovations dans les architectures de
réseaux faits pour une tâche X ont
tendance à aussi aider pour de
nombreuses autres tâches

• Synergies et emballements

38
Szegedy et al., Rethinking the Inception Architecture for Computer Vision, CPVR 2015.

Bouturage

• Combiner des réseaux pré-
entraînés sur des tâches
différentes

39

Le gradient = sève
• Pas de gradient = pas d’apprentissage

40Extrait de https://youtu.be/IHZwWFHWa-w 3Blue1Brown

https://youtu.be/IHZwWFHWa-w

Processus itératif

Les voies du réseaux sont impénétrables
• Beaucoup de paramètres

et de techniques

• Important de

développer

une intuition

42

Crédit : Andrew Ng

Optimisation vs. gradient

• Théorème d’approximation universelle ne
dit pas comment trouver cette fonction

• Relation incestueuse entre les
architectures développées (dérivable end-
to-end) et les méthodes d’optimisation

• Autres approches (Hebbian), mais on n’en
parlera pas dans le cours

43

Toujours besoin de beaucoup de données?

• Non, si l’on passe par des réseaux pré-
entraînés

• Fantastiques extracteurs de
caractéristiques

• Résultats dépassent souvent l’état de l’art
pré-Deep

44

Deep Learning : appel à la prudence

• Excellente présentation NIPS 2017 d’Ali
Rahimi

• https://youtu.be/Qi1Yry33TQE

• Deep Learning is alchemy

• Doit chercher plus de rigueur,
comprendre ce qui se passe

45

Exemples d’applications

Reconnaissance de caractères

47

f(;q)
vecteur de 10
scores, un par
classe

MNIST

28 x 28

q : paramètres de la fonction
(Labo 1)

Reconnaissance d’images

48

f(;q)
vecteur de 1000
scores, un par
classe

ImageNet

224 x 224 x 3

q : paramètres de la fonction

Nature, Février 2017

130,000 images
d’entrainement

Détection d’objets

50
Redmon and Farhadi, YOLO9000: Better, Faster, Stronger, CVPR 2017.

f(;q)

Description d’images

51

f(;q)
Construction
worker in orange
safety vest is
working on road

Karpathy and Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Descriptions,
CVPR 2015.

52

Qui est cet acteur?

Génération d’images

53

f(;q)

Karras et al., Progressive Growing of GANs for improved quality,
stability and variation, submitted to ICLR 2018.

Reconnaissance voix

55

f(;q) Ok Google,
where is my
car

Génération de voix : Tacotron 2

56

f(;q)
She earned a
doctorate in
sociology at
Columbia
University

Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
Jonathan Shen, arXiv:1712.05884, dec 2017.

« George Washington was the first President of the United States »

Note : exemple d’entraînement :

A: B:

https://arxiv.org/find/cs/1/au:+Shen_J/0/1/0/all/0/1

Traduction automatique

57

f(;q)I think,
therefore
I am.

Je pense
donc je
suis.

Apprentissage visuomoteur

58

Transfert de style

59

G(;q)

F(;q)
Zhu et al., Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks, CVPR 2017.

Transfert
de style

60

Jeu

61

Réseaux classiques
peu profonds :

classification d’images

MNIST

• 10 chiffres

• 70,000 images de 28  28 pixels

63

Source : http://blog.welcomege.com/mnist-database/

Classificateur linéaire sur MNIST

• Le plus simple possible : linéaire

• Paramètres W, taille cn + biais b, taille c1

– n : nombre de pixels

– c : nombre de classes

64

f(;W,b)
vecteur de 10
scores, un
par classe

MNIST

Exemple simplifié

65
adapté de cs231n

.7 -.3 .2 .3

-.5 1.7 1.5 .4

.7 1.1 -.4 -.1

.1 .4

.7.3

.1

.4

.3

.7

+ =

Chiffre 1

Chiffre 2

Chiffre 3

1

1.2

-.4

« Flatten »

Score

1.22

2.56

-.08

W b

f = Wx+b

Interprétation classificateur linéaire

66

f = Wx+b

dimension 1

d
im

e
n

si
o

n
 2

.7 -.3 .2 .3

-.5 1.7 1.5 .4

.7 1.1 -.4 -.1

w1

w1

w2

w2

w3

w3

Réseau 1 couche linéaire
• Image 28x28 → 784x1

• Matrice W 10x784

• Biais b 10x1

• Initialisé au hasard

• Entrainement SGD sur

perte multiclass hinge loss

• Train set : 60,000 exemples

• Test set : 10,000 exemples

• Résultat ~92% précision sur test
67

class SimpleLinear(nn.Module):
def __init__(self):

super(SimpleLinear, self).__init__()
self.fc1 = nn.Linear(784, 10)

def forward(self, x):
x = x.view(-1, 784) # Flatten
x = self.fc1(x)
return x

1
max(0,1 () ())

i cible

L sortie cible sortie i
m 

= − +

+ grand

+ petits

Poids W appris : patrons 2828

• On voit corrélation spatiale sur pixels voisins

• Réseau doit la découvrir : doit avoir +
d’exemples d’entraînement

• Si applique permutation identique sur les
pixels, même précision

28

28

(Clair → positivement corrélé)

160 44 84 137

211 23 56 209

64 94 198 178

76 117 172 201

81 94 119 36

101 78 11 21

53 41 98 47

99 32 39 83

Sur images couleur CIFAR-10

70cs231n

Exemple de W trouvé

32  32  3 = 3072

90 44 17 63

101 78 11 201

53 41 98 42

99 32 39 143

(Note : biais dans le dataset : l’image est centrée sur l’objet)

Image RGB

Réseau 2 couches linéaires

• Matrice W1 200x784, bias b1 200x1

• Matrice W2 10x200, biais b2 10x1

• # paramètres ~160,000

– précédent ~8,000 paramètres

• Résultats? Encore ~92%!

• Pas plus expressif que linéaire 1 couche, car
se simplifie :

• Il faut ajouter non-linéarités pour
augmenter la puissance d’expression

71

W1

W2

200

784

10

W2(W1x+b1) + b2 = Wx+b

Ajout de
non-

linéarité

72

T

i i

i

z b w x b w x= + = +Pré-activation :

S

x1

x2
+

+

xn

…
+

()h g z=Activation :  non-linéaire

O
p

ératio
n

s
lin

éaire

n
o

n
-lin

éarité

O
p

ératio
n

s
lin

éaire

O
p

ératio
n

s
lin

éaire

…

flot

n
o

n
-lin

éarité

n
o

n
-lin

éarité

b

+

symbole
combiné

Recap de semaine 1
• Réseaux sont des fonctions, paramétrisés avec q

• Toute la connaissance des données d’entraînement
est résumé dans q

• Réseau y = Wx+b est

un séparateur linéaire

• W sont comme des

patrons

73

Recap de semaine 1

• Doit intercaler des opérations non-linéaires, sinon
se réduit à un réseau linéaire

• On a besoin d’un gradient qui « circule » bien
pour l’apprentissage

• Apprentissage de représentation

• Renaissance : ReLU + Données + GPU

74

O
p

ératio
n

s
lin

éaire

n
o

n
-lin

éarité

O
p

ératio
n

s
lin

éaire

O
p

ératio
n

s
lin

éaire

flot

n
o

n
-lin

éarité

n
o

n
-lin

éarité

Exemple classique : XOR

75
Image tirée de (I. Goodfellow) deeplearningbook.org

Non-séparable linéairement

Activation non-linéaire ReLU

76

(La plus populaire en ce moment)

Image tirée de (I. Goodfellow) deeplearningbook.org

Solution XOR

77

(1) (2) (3) (4)[]X x x x x=

1 1

1 1 0
,

1 1 1
W b

   
= =   

−   

(1) (2) (3) (4)

1 1 1 1Z z z z z =  

0 1 1 2
() max 0,

1 0 0 1
g Z

  
=   

−  

4 exemples

0 1 1 2

1 0 0 1
Z

 
=  

− 

(format vectorisé)

4 pré-activations

1

0

0

Y = [0 1 1 0]

0

0 1 2

1

1 1W X b= +

0 1 1 2

0 0 0 1

 
=  
 

0 0 1 1

0 1 0 1

 
=  
 

0 1 1 2 0 0 0 0

0 1 1 2 1 1 1 1

   
= +   

− − − −   

ReLU

Représentation
plus facile

Importance de la représentation

78
Image tirée de (I. Goodfellow) deeplearningbook.org

L’un est séparable linéairement, l’autre non

79

Contraste avec
approches

traditionnelles
Appris
conjointement

Hand-
designed
program

Hand-
designed
features

Input Input InputInput

Output

Output Output

Output

Mapping
from

features

Mapping
from

features

Mapping
from

features

Features
Simple
features

Additional
layers of

more
abstract
features

Representation
Learning

Deep
Learning

Rule-
based

systems

Classic
machine
learning

Fonctions d’activations

Rôles

• Apporte une non-linéarité dans le réseau

• Situé à l’interne, ou en sortie

• Considérations :

– difficulté d’entraînement (son gradient)

– comportement se rapproche

• de ce que l’on cherche à prédire (probabilités, one-
hot vector, angles, déplacements, etc.)

• action particulière (gating)

– temps de calcul

81

• Une des premières utilisées

• Si on désire une sortie entre 0 et 1 (squashing)

• Tombée en désuétude comme non-linéarité
de base

Fonction d’activation : sigmoide

82

1
()

1 exp()
x

x
 =

+ −

Exemple utilisation sigmoïde

• Prédiction binaire (logistic regression)

83

(1|)P y x=

()Tsortie w x b= +

S

x1

x2
+

+

xn

…
+

b

+

Exemples utilisation sigmoïde

84
Crédit image : Redmon et al., YOLO9000: Better, Faster, Stronger. CVPR 2017.

Prédire pose relative

Exemple utilisation sigmoïde
• gating dans Long short-term memory

Greff et al. LSTM : A Search Space Odyssey, T. on Neural Networks and Learning Systems, Oct 2017.

Fonction d’activation : tanh

• Autre fonction historique

• Désire une sortie entre -1 et 1 (squashing)

• Donne une sortie centrée à 0 (préférable à
0.5 de la sigmoïde)

86

exp(2) 1
tanh()

exp(2) 1

a
x

a

−
=

+

2 (2) 1x= −

Exemple utilisation tanh
• LSTM : Long short-term memory

Greff et al. LSTM : A Search Space Odyssey, T. on Neural Networks and Learning Systems, Oct 2017.

ReLU
• La plus populaire comme

non-linéarité

• Toujours non-négatif

– moyenne sortie biaisée +

• Pas de limite supérieure

• Facile à calculer (exp est
plus long)

88

max(0,x)

• Accélère l’entraînement des réseaux (facteur 6 pour
AlexNet).

• Résulte en des activations parcimonieuses (certains
neurones sont à 0)
– Parfois des neurones vont mourir, particulièrement si

learning rate est trop grand 

• Rarement utilisé en sortie du réseau

Leaky ReLU
• Gradient = 0 signifie

impossibilité d’entraîner

• Pente très légère dans la
partie négative : leaky
ReLU

89

f(x) =
ax si x<0

x autrement

• Si un paramètre a (entraînable) par
neurone/couche, on obtient la PReLU [1]

• Donne des distributions de sorties plus centrée à
0 que ReLU

[1] He et al. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification, ICCV 2015.

Autres activations

• Maxout [1] : max(w1
Tx+b1, w2

Tx+b2)

• ELU [2]

• Parametric ELU [3]

[1] Goodfellow et al., Maxout Network, ICML 2013.
[2] Clevert et al., Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs), ICLR 2016.
[3] Trottier et al., Parametric exponential linear unit for deep convolutional neural networks, ICMLA 2017.

Softmax
• Utilisé en sortie, prédiction multi-classe

• Version continue, douce, de max([…])

• Va dépendre de l’ensemble des sorties du
groupe

• Sortie somme à 1, chaque sortie entre 0 et 1 :
– distribution de probabilité multinouilli

• Manière d’indiquer au réseau de chercher
l’appartenance exclusive à une seule classe

91

exp()
ˆ

exp()

i
i

j

j groupe

z
y

z


=


Softmax

92

.7 -.3 .2 .3

-.5 1.7 1.5 .4

.7 1.1 -.4 -.1

.1

.4

.3

.7

+ =

1

1.2

-.4

Score zi

1.22

2.56

-.08

W b

log des
probabilités

non-normalisées

exp()
(|)

exp()

i

j

j groupe

z
P classe x

z


=


s
o
f
t
m
a
x

Softmax

• Peut avoir plus
d’un softmax en
sortie

• Combiner des jeux
de données avec
différentes
granularités de
classes

– chien vs labrador

93
Crédit image : Redmon et al., YOLO9000: Better, Faster, Stronger. CVPR 2017.

Softmax avec température T

• Si T est élevé, les sorties seront plus
égalitaires. Si T faible, winner-takes-all

• Utilisé dans :

– LSTM pour varier la confiance/répartition des
sorties

– distillation des réseaux [1]

94

exp(/)
ˆ

exp(/)

i
i

jj

z T
y

z T
=


[1] Hinton et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531 (2015).

